
n

NDK: Novell Identity Manager (DirXML) Driver Kit
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

N O V E L L ® I D E N T I T Y M A N A G E R
(D I R X M L) D R I V E R K I T

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to http://www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ (http://www.novell.com/company/legal/patents/) and
one or more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc., in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc., in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 13

1 DirXML and DirXML Drivers 15
1.1 Driver Basics . 15
1.2 Requirements and Resources . 20

1.2.1 Requirements . 20
1.2.2 Resources . 21

1.3 DirXML Architecture. 21
1.3.1 DirXML Features . 22
1.3.2 DirXML Engine and Driver Interaction. 24
1.3.3 Driver Interaction with eDirectory Objects and Attributes . 27

1.4 DirXML and Multiple Directories . 29
1.5 Designing the Driver . 30
1.6 Where to Get Started. 31

2 Writing a DirXML Driver 33
2.1 Driver Overview . 33

2.1.1 Driver Communication and Threads . 33
2.1.2 Driver Life Cycle . 34

2.2 Getting Started. 36
2.2.1 Application Requirements . 36
2.2.2 XML Interface . 36
2.2.3 Language—C++ or Java . 37
2.2.4 Overview of the Process . 38

2.3 Starting with the Skeleton Driver . 39
2.3.1 Setting Up a Skeleton Driver Instance to Run. 40
2.3.2 Compiling the Java Skeleton Driver . 40
2.3.3 Compiling the C++ Skeleton Driver . 41

2.4 Constructing the Driver Object. 42
2.4.1 Java Constructor . 42
2.4.2 CreateDriver Function for C++ . 42

2.5 Implementing the DriverShim Interface . 43
DriverShim init . 44
DriverShim getSubscriptionShim . 49
Driver getPublicationShim . 50
DriverShim shutdown. 51
DriverShim getSchema . 54
DriverShim destroy (C++ only). 58

2.6 Implementing the SubscriptionShim Interface . 58
SubscriptionShim init . 60
SubscriptionShim execute . 64

2.7 Implementing the PublicationShim Interface . 71
PublicationShim init . 72
PublicationShim start . 76

2.8 Implementing the XmlQueryProcessor Interface . 81
query . 82

2.9 Dealing with XML Documents . 83
2.9.1 Java Sample Code . 83
2.9.2 C++ Sample Code. 85
7

8 NDK: Novel

novdocx (E
N

U
) 01 February 2006
2.10 Driver State. 87
2.11 Driver Configuration . 88
2.12 Additional Tips for C++ Drivers. 91

2.12.1 Memory Management . 91
2.12.2 C++ Utility Functions and Interfaces . 92

3 Debugging the Driver 95
3.1 Using DSTrace and the DirXML Trace Log . 95

3.1.1 Enabling Verbose DirXML Driver Messages . 96
3.1.2 Enabling the DirXMLTrace Log . 96
3.1.3 Adding Trace Messages to Your Driver . 96

3.2 Using a Debugger with a C++ Driver . 98
3.2.1 DLLs on Windows (NT, 2000, XP) . 98
3.2.2 NLMs on NetWare . 98

3.3 Using a Debugger with a Java Driver . 98
3.3.1 Agent Debugger . 99
3.3.2 Java Platform Debugger Architecture (JPDA) . 99
3.3.3 Visual Cafe 3.0 Debugger . 99
3.3.4 JDB Debugger . 100
3.3.5 JVM Variables . 100

4 Introduction to the Rules and Filters 103
4.1 Event Filters . 103
4.2 Transformation Rules . 103
4.3 Channel-Independent Transformations . 105

4.3.1 Schema Mapping Rules . 105
4.3.2 Input Transformation Style Sheet. 106
4.3.3 Output Transformation Style Sheet . 106

4.4 Channel-Dependent Transformations . 107
4.4.1 Matching Rules . 107
4.4.2 Create Rules . 108
4.4.3 Placement Rules . 109
4.4.4 Event Transformation Rules. 109
4.4.5 Command Transformation Rules . 109

4.5 Event Processing . 110
4.5.1 Subscriber Channel . 110
4.5.2 Publisher Channel . 111

5 Novell exteNd Composer Driver 113
5.1 Setting Up the exteNd Composer Driver . 113

5.1.1 Preparing the Project . 114
5.1.2 Building the Project . 114
5.1.3 Running the Project . 114

6 Driver Installation 115
6.1 Copy the Driver. 115
6.2 Create the Driver Objects . 115
6.3 Exporting the Configuration . 116
6.4 Set Up the Server Environment . 116
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
7 eDirectory DTD Commands and Events 117
7.1 Top Level Elements . 117

<nds>. 119
<driver-config>. 121

7.2 Input and Output Elements . 122
<input>. 123
<output>. 125

7.3 Command and Event Elements . 126
<add>. 127
<add-association> . 130
<delete>. 132
<init-params>. 134
<instance> . 139
<modify> . 141
<modify-association>. 144
<modify-password> . 146
<move> . 148
<query> . 151
<query-schema> . 155
<remove-association> . 157
<rename> . 159
<schema-def> . 162
<status> . 166

7.4 Other Elements . 167
<add-attr> . 168
<add-value>. 169
<allow-attr> . 170
<allow-class> . 171
<association>. 172
<attr> . 173
<attr-def> . 174
<authentication-info> . 176
<class-def> . 177
<component>. 178
<config-object> . 179
<driver-filter> . 180
<driver-options>. 182
<driver-state>. 184
<modify-attr> . 185
<old-password> . 186
<parent> . 187
<publisher-options> . 189
<publisher-state> . 191
<read-attr> . 192
<remove-value>. 193
<search-attr> . 194
<search-class> . 195
<source> . 196
<subscriber-options> . 197
<subscriber-state> . 199
<value> . 200

8 Rule Reference 203
8.1 Schema Mapping Elements . 203

<attr-name-map> . 205
8.2 Matching Rule Elements . 206
9

10 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<matching-rules> . 208
<matching-rule> . 210
<match-attr> . 212
<match-class> . 213
<match-path> . 214

8.3 Create Rule Elements . 214
<create-rules> . 216
<create-rule> . 218
<match-attr> . 220
<required-attr> . 221
<template> . 222

8.4 Placement Rule Elements . 222
<placement-rules> . 224
<placement-rule> . 227
<match-attr> . 229
<match-class> . 230
<match-path> . 231
<placement>. 232

8.5 Event Transformation Rules . 233
8.5.1 Sample Event Transformation Rule . 234

8.6 Command Transformation Rules . 234
8.6.1 Sample Command Transformation Rules . 235

8.7 Input Transformation Style Sheets . 236
8.8 Output Transformation Style Sheets . 236

9 Style Sheets 239
9.1 Restrictions. 239

9.1.1 Matching Rule Restrictions . 239
9.1.2 Create Rule Restrictions . 240
9.1.3 Placement Rule Restrictions . 240

9.2 Starting with an Identity Transformation . 240
9.3 Using the Parameters that DirXML Passes . 240
9.4 Using Extension Functions . 243
9.5 Testing Style Sheets Outside of DirXML . 244
9.6 Invoking the Novell XSLT Processor Directly . 245
9.7 Creating a Password Example: Create Rule . 246
9.8 Creating an eDirectory User Example: Create Rule. 247

10 DirXML Error Codes 253

11 Javadoc, FAQs, and DTD Reference 255

A VRTest Application 257
A.1 Requirements and Installation . 257

B DirXML Definitions for the Schema 259
B.1 DirXML Object Class Definitions . 259

DirXML-Driver . 261
DirXML-DriverSet . 263
DirXML-Publisher . 265
DirXML-Rule . 267
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-StyleSheet . 269
DirXML-Subscriber . 271
StyleSheet . 273

B.2 DirXML Attribute Definitions. 274
DirXML-ApplicationSchema. 275
DirXML-Associations . 276
DirXML-CreateRule . 277
DirXML-DriverCacheLimit . 278
DirXML-DriverFilter . 279
DirXML-DriverSetDN . 280
DirXML-DriverStartOption . 281
DirXML-DriverStorage . 282
DirXML-DriverTraceLevel . 283
DirXML-EventTransformationRule. 284
DirXML-InputTransform . 285
DirXML-JavaDebugPort . 286
DirXML-JavaModule . 287
DirXML-JavaTraceFile . 288
DirXML-MappingRule . 289
DirXML-MatchingRule . 290
DirXML-NativeModule . 291
DirXML-OutputTransform . 292
DirXML-PlacementRule . 293
DirXML-ShimAuthID . 294
DirXML-ShimAuthPassword . 295
DirXML-ShimAuthServer . 296
DirXML-ShimConfigInfo . 297
DirXML-ServerList . 298
DirXML-State . 299
DirXML-Timestamp . 300
DirXML-XSLTraceLevel . 301
XmlData . 302

C Revision History 303
11

12 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
About This Guide

Novell® Identity Manager, powered by DirXML®, enables an application to share selected directory
data with eDirectoryTM, and to synchronize that data between eDirectory and the application. Identity
Manager has four main components:

• The DirXML engine which provides the framework.
• The Identity Manager policies which control the mapping of attributes and classes and the

matching and creation of entries.
• Event filters which control the direction of data synchronization.
• The Identity Manager driver shims which serves as the interface between the application and

the DirXML engine.

This document describes how to implement such an Identity Manager driver shim and contains the
following sections:

• “DirXML and DirXML Drivers” on page 15
• “Writing a DirXML Driver” on page 33
• “Debugging the Driver” on page 95
• “Introduction to the Rules and Filters” on page 103
• “Novell exteNd Composer Driver” on page 113
• “Driver Installation” on page 115
• “eDirectory DTD Commands and Events” on page 117
• “Rule Reference” on page 203
• “Style Sheets” on page 239
• “DirXML Error Codes” on page 253
• “Javadoc, FAQs, and DTD Reference” on page 255
• “VRTest Application” on page 257
• “DirXML Definitions for the Schema” on page 259
• “Revision History” on page 303

Audience

This guide is intended for the XML developer interested in creating Identity Manager driver shims.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.
13

14 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Documentation Updates

For the most recent version of this document, see the Novell Identity Manager (DirXML) Driver
NDK page (http://developer.novell.com/ndk/dirxml.htm).

Additional Information

For current documentation on Novell Identity Manager 3, see the Identity Manager Documentation
Web site (http://www.novell.com/documentation/idm/index.html).

For current documentation on Novell Identity Manager 3 Policies and Driver Customization, see the
Novell Documentation Web site (http://www.novell.com/documentation/idm/index.html)

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
l Identity Manager (DirXML) Driver Kit

http://developer.novell.com/ndk/dirxml.htm
http://developer.novell.com/ndk/dirxml.htm
http://www.novell.com/documentation/idm/index.html
http://www.novell.com/documentation/idm/index.html
http://www.novell.com/documentation/idm/index.html

1
novdocx (E

N
U

) 01 February 2006
1DirXML and DirXML Drivers

The DirXML® engine provides the framework to connect disparate directories to eDirectoryTM and
to synchronize selected information. The DirXML driver is the application-specific piece that needs
to be written for each application that you want to share and synchronize data with eDirectory.
DirXML allows an application to do the following:

• Share data with eDirectory
• Synchronize data to eDirectory when modified in the application
• Synchronize data to the application when modified in eDirectory

DirXML does not provide single-seat administration or solve the problem of multiple
administrators, with an administrator for each application. It does solve the problem of having
duplicate, but inconsistent data in each of the applications.

Each application requires a DirXML driver to interface with the application and the DirXML
engine. This document explains how to develop and implement such a driver. This chapter provides
an overview of the following:

• Section 1.1, “Driver Basics,” on page 15
• Section 1.2, “Requirements and Resources,” on page 20
• Section 1.3, “DirXML Architecture,” on page 21
• Section 1.4, “DirXML and Multiple Directories,” on page 29
• Section 1.5, “Designing the Driver,” on page 30
• Section 1.6, “Where to Get Started,” on page 31

1.1 Driver Basics
DirXML is designed to synchronize information between data sources. The core piece of DirXML,
the DirXML engine, handles all synchronization to and from eDirectory, which acts as the hub of the
synchronization.

For each application that wishes to synchronize with eDirectory, a driver must be written to do two
basic things: Notify the DirXML engine of a change in the application, and receive notifications of
changes in eDirectory from the DirXML engine and make those changes in the application.

In order to communicate with any number of applications, an XML format, called XDS, is used as
the common denominator. XDS is eDirectory-flavored XML with elements to represent directory
objects and the operations you might perform on them.

All information exchanged between your driver and the DirXML engine is in this format. XDS
documents contain either a command or event, depending on the flow of information.

Commands are XDS documents received from the DirXML engine, containing changes from
eDirectory. Events are XDS documents sent to the DirXML engine, containing changes in your
application. This distinction is simple but important, because different actions are required
depending whether you are handling a command or an event.
DirXML and DirXML Drivers 15

16 NDK: Novel

novdocx (E
N

U
) 01 February 2006
From the standpoint of driver development, the goal is straightforward: for each event that occurs in
your application, pass the DirXML engine an XDS document that explains the event. For each
command received from the DirXML engine as an XDS document, translate the document into API
calls to apply the change.

Publisher and Subscriber

As previously mentioned, your driver must be able to publish changes to the DirXML engine, and
receive changes from the DirXML engine. DirXML defines these actions as publishing and
subscribing, named from the point of view of the application. Your application submits changes on
the Publisher Channel and receives changes on the Subscriber channel.

Your driver must implement a separate process for each channel.

A Typical Transaction on the Subscriber Channel

For example, a user is added in eDirectory. This change could have occurred directly in eDirectory,
or in a human resources system that is synchronized to eDirectory using a PeopleSoft or some other
dirXML driver. When this change occurs, the DirXML engine sends an XDS document to your
driver on the subscriber channel containing information about the change. It might look similar to
the following:

<nds dtdversion="2.0" ndsversion="8.7.3">
<source>
 <product version="2.0">DirXML</product>
 <contact>Novell, Inc.</contact>
</source>

<input>
 <add class-name="User" event-id="0" src-dn="\ACME\Sales\Smith"
 src-entry-id="33071">
 <add-attr attr-name="Surname">
 <value timestamp="1040071990#3" type="string">Smith</value>
 </add-attr>
 <add-attr attr-name="Telephone Number">
 <value timestamp="1040072034#1" type="teleNumber">111-1111
 </value>
 </add-attr>
 </add>
</input>
</nds>

Your driver now has an XML document containing a change that occurred in eDirectory.

Your driver shim parses this xml document to determine what actions need to occur to bring the
application up to date, and then translates this into API calls.

For an LDAP application, the API calls might look similar to the following:

LDAPAttributeSet attributeSet = new LDAPAttributeSet();
String containerName = "ou=Sales,o=Acme";

attributeSet.add(new LDAPAttribute("objectclass", new
String("User")));
attributeSet.add(new LDAPAttribute("sn", new String("Smith")));
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
attributeSet.add(new LDAPAttribute("telephonenumber",
 new String("111-1111")));
String dn = "cn=Smith," + containerName; LDAPEntry newEntry =
new LDAPEntry(dn, attributeSet);

It is important to be aware that decisions about where to place new objects, how to create new
objects, filling in missing mandatory attributes, and so on, are made in the dirXML engine, not in
your driver. Your driver simply needs to report each event that occurs to the dirXML engine, and
make any changes requested by the dirXML engine.

A Typical Transaction on the Publisher Channel

A Change to a user's manager occurs in your application, which for this example, is an HR database
designed to handle your organization hierarchy. When this change occurs, your driver needs to first
find out about the change, then translate the change into an XDS document to send it to the DirXML
engine.

Traditionally, the most difficult aspect of authoring a DirXML driver is finding a reliable, consistent
source to monitor changes in your application. Some applications, such as eDirectory, have full-
featured event notification systems that can simplify this process. Some applications log all changes
to a file or other database (which unfortunately can change from release to release), and others have
no method of logging changes, which require driver writers to implement their own system. Most
vendors consider data sharing a positive feature and are willing to help you determine a suitable
method to monitor changes.

For this example, let's say your application has a change monitoring API or persistent search
functionality, which asynchronously sends you the events you wish to monitor through a
getResponse method when they occur:

//connect, authenticate, and enter the event monitor or persistent
search API

while ((event = queue.getResponse()) != null)

//set up conditional statements to determine the type of change

if (event instanceof SomeTypeOfEvent)
{
 //transform this event into an XDS document with relevant information
 //and send it to the DirXML engine, or call another API to...
}
if (event instanceof SomeOtherTypeOfEvent)
{
 //transform this event into an XDS document with relevant information
 //and send it to the DirXML engine, or call another API to...
}

...

The implementation of finding and reporting changes is left to your creativity, the only requirement
is that in the end, an XDS document is sent to the DirXML engine containing the change.
DirXML and DirXML Drivers 17

18 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Policies, Transformations, Stylesheets, XSLT, and so on

If you have any exposure to DirXML, you have likely heard much talk about policies, stylesheets,
transformations, and many other things that can cloud your idea of what exactly your driver must do.

Simply put, policies modify an event sent to the DirXML engine to make it work for an individual
environment. For example, one organization might use the inetorgperson as the main user class,
while another organization might use User. If you are synchronizing a phone number, you don't
really care what object class is used, but you can't write code to handle every situation. Therefore, a
policy can be implemented to add the phone number change to an inetorgperson for the first
organization, and a separate rule can be implemented to make it work for the User class.

Policies make schema transformations, specify matching criteria to determine if an object already
exists in an application or eDirectory, and many other things. Because of this, an add event reported
by your application may end out as a modify operation in eDirectory, if a matching policy
determines that the object you added already exists in the data store.

Most of the time, your driver does not need to make many decisions about the events it reports. If
you think that somebody might want to synchronize an event using your driver, you should probably
report it. There are exceptions, however, in the case that your driver has to transfer a lot of data over
the wire, you might want to limit the events you report, and you will probably think of others as you
learn your application. This decision of which events to report is left entirely up to you, just be
aware that it is often easier from an implementation standpoint to filter events in the engine than it is
to re-write or re-compile your driver to handle a new situation.

On the subscription channel, it is basically the same in reverse. If an event is sent to your
application, it should be logged. For example, a new user is created in eDirectory. Before sending
this command to your driver, the DirXML engine calls a series of policies, one of which defines the
way objects are created, in which rules can determine if a corresponding user already exists in your
application, make decisions about placement, provide default values for required attributes that are
not specified, and so on. This add event may be transformed into a modify event if the object exists
in your application, and attributes that were not contained in the original event could be added to
conform with the object creation model of your application.

Once these rules are applied and a command is sent to your driver, your driver should make the
change in the application. If the change is somehow incorrect, then logic needs to be added to the
creation policy, not to your driver.

Once again, the goal is straightforward: for each event that occurs in your application, pass the
DirXML engine an XDS document that explains the event. For each command received from the
DirXML engine as an XDS document, translate the command into API calls and execute the
command.

To learn more about policies, see the Policy Builder and Driver Customization Guide (http://
www.novell.com/documentation/idm/index.html).

Working with XDS documents

From the introduction, you are probably aware that a good portion of your development time is
spent parsing and creating XDS documents. To work with XDS documents, there are four APIs
available:

• Document Object Model (DOM)
• Simple API for XML (SAX)
l Identity Manager (DirXML) Driver Kit

http://www.novell.com/documentation/idm/index.html

novdocx (E
N

U
) 01 February 2006
• Novell XDS Libraries
• Serial

The two most common XML parsing interfaces in use today are DOM and SAX.

DOM builds an XML document into a tree structure, you navigate this tree to find information. SAX
is an event-driven approach that reports events using callbacks.

DOM and SAX are both open interfaces that can handle any sort of XML document. With this
flexibility there is increased development overhead, because every type of XML document no is
handled in a similar fashion.

To reduce development time, Novell has developed a custom XML parsing API, called XDS
Libraries, which extends the DOM interface. The XDS Libraries are designed to work specifically
with DirXML and eDirectory, enabling them to relieve a fairly large portion of the development
overhead involved parsing XML documents.

The XDS Libraries provide a framework for each channel that calls a method you supply whenever
a certain event is received. For example, when you driver receives an add event, the XDS Libraries
determine the event type for you and call the method you have selected to handle add events.
Methods are also supplied to create XDS documents using API calls, relieving you from creating the
XDS documents yourself, and documents are validated to reduce the chance of encountering an
error.

Each interface is better for different situations, and there are extensive guides to each of the open
interfaces on the Web. XDS is simplified and can reduce development time, but it works only with
the NDS DTD and cannot be used when processing other types of XML documents. Serial
processing is usually avoided if another interface can be used.

These interfaces are discussed in further detail in Section 2.2, “Getting Started,” on page 36.

Discovering Changes in Your Application

Typically, this is the most difficult part of creating a custom driver, and unfortunately, it is the part
where we can only provide general guidelines. To monitor changes, you first need to determine how
the application stores data, what interfaces are exposed in what programming languages, if the
application logs data or supplies an event system, and so on.

If you are lucky, your application stores information in XML and has a full-featured event system. In
this case you would simply transform the application's XML into XDS whenever an event occurs
and pass this to the DirXML engine.

In some circumstances, the application might not have even a suitable event log, so you might need
to build your own event log, implement a system to read this log, then transform the stored events
into XDS in order to make the synchronization work.

As mentioned previously, this is left to your creativity.

Where Should I Start?

If you are new to DirXML driver development, Novell DeveloperNet® University provides a free,
online DirXML driver creation training course, that is highly recommended. The course is designed
to take approximately 24 hours to complete and walks you through the creation of a custom
DirXML PBX driver.
DirXML and DirXML Drivers 19

20 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DeveloperNet University: Custom Driver Development Course (http://developer.novell.com/
education/tutorials/dirxml2/01.htm)

Chapter 2, “Writing a DirXML Driver,” on page 33 discusses modifying the provided skeleton
drivers to create your DirXML driver.

1.2 Requirements and Resources
In order to develop a DirXML driver, you need a test server running one of the following:

• NT 4 with service pack 5, Windows 2000, Windows XP with Novell eDirectory 8.5 (build
85.x) or later.

• NetWare 6, NetWare 5.1, or NetWare 5 (with NWSP3 or later) and NDS eDirectory 8.5 (NDS
build 85.x) or later.

• Linux, Solaris, or AIX with Novell eDirectory 8.5 (NDS build 85.x) or later.

The eDirectory 8.5 server can be installed in an eDirectory tree with servers running earlier versions
of eDirectory. You also need a development workstation with JDK 1.17b or later to write a Java
DirXML driver, or a development workstation with a suitable compiler to write a C++ driver.

The following sections give you additional details on the requirements and the available resources.

1.2.1 Requirements
The DirXML driver has the following requirements:

• eDirectory version. The DirXML engine runs on Novell eDirectory 8.5 or later which is
available for NetWare, NT, Solaris, Linux and AIX. The DirXML driver (or a portion of the
driver) must run on the same computer as the DirXML engine.

• eDirectory Objects. The DirXML driver requires a number of eDirectory objects: a DirXML-
DriverSet object, a DirXML-Driver object, a DirXML-Subscriber object, a DirXML-Publisher
object, and DirXML-Rule objects. It can have optional DirXML-StyleSheet objects. NDS
eDirectory 8.5 extends the schema to support these objects. Later versions include DirXML
schema as part of the base schema.

• External Application. The application can reside on the eDirectory server or on a remote
server. If the application is remote, it must provide a communication method so that the driver
running on the eDirectory server can communicate with the remote application. For example,
the DirXML driver for the Netscape directory uses LDAP for remote communication.
The external application must also provide a programming interface that allows the driver to
read and write data to the application. Your driver also needs to receive notification of changes
from the application. If the external application does not have an event notification system,
your driver needs to develop one for the application by logging all modifications to a file,
polling the application for modifications, or some other method.

• Programming Languages. The driver can be written in Java or C++. The sample code
supplied is written in C++ and Java. Java requires JDK 1.1.7b or later.

• XML, XSL and XDS. If the external application does not store the information in XML
format, your driver will need to convert the data from its native format to XDS before sending
it to eDirectory to store. XDS is the DirXML flavor of XML and is documented in the nds.dtd
file. When your driver receives updates from eDirectory, your driver will need to take the XDS
formatted data and convert it to the application's native format.
l Identity Manager (DirXML) Driver Kit

http://developer.novell.com/education/tutorials/dirxml2/01.htm

novdocx (E
N

U
) 01 February 2006
XSLT (Extensible Stylesheet Language Transformations) can be used to transform the XDS
format to another variant of XML or another standard format such as LDIF.

1.2.2 Resources
The following list contains several of the resources available to assist you in the creation of a
DirXML driver:

• Custom DirXML Driver Development Course (http://developer.novell.com/education/tutorials/
dirxml2/01.htm) This course is an excellent introduction to DirXML driver development and is
highly recommended for new driver developers.

• Novell AppNotes (http://www.novell.com/coolsolutions/appnote/bydate.html) Novell
AppNotes regularly adds new articles related to Identity Manager and DirXML, including
architecture, analyzing NDS.DTD, and troubleshooting and debugging.

• Novell Identity Manager Cool Solutions (http://www.novell.com/coolsolutions/nim/)Contains
Identity Manager and DirXML related tips and solutions

1.3 DirXML Architecture
In the DirXML framework, eDirectory is the hub. Other applications and directories publish their
changes to eDirectory, and eDirectory sends changes to the applications and directories that have
subscribed for them. Thus there are two main flows of data, as discussed in the driver introduction:

• Publisher channel. This is the flow of data to eDirectory. This flow is called the publisher
channel because other applications are publishing their changes to eDirectory.

• Subscriber channel. This is the flow of data from eDirectory. This flow is called the subscriber
channel because eDirectory sends changes only to the applications that have subscribed to
receive them.

The DirXML engine and the DirXML drivers are the key components that implement the publisher
and subscriber channels and thus connect eDirectory with the other application.

All data is exchanged in XML (eXtensible Mark-up Language) documents. The DirXML engine
translates an eDirectory event into an XML document and uses rules to determine how the
modification is sent to the application. The engine uses the following types of rules and style sheets:

• Mapping rules which map eDirectory object class names and attribute names with an
application's schema names.

• Matching rules which match an eDirectory entry with an entry in the application.
• Create rules which place conditions on creating new entries in eDirectory or the application.
• Placement rules which determine where in the eDirectory or application hierarchy the new

entry is created.
• Style sheets which transform input or output commands into a different command, change an

event from one type to another, or perform other arbitrary XML transformations.
DirXML and DirXML Drivers 21

http://developer.novell.com/education/tutorials/dirxml2/01.htm
http://www.novell.com/coolsolutions/appnote/bydate.html
http://www.novell.com/coolsolutions/nim/

22 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The figure below illustrates this architecture and shows that the DirXML engine does most of the
work.

Figure 1-1 DirXML Architecture

The DirXML driver is designed to be a data pipe. It has the following responsibilities for the
subscriber channel:

• Receiving the XML document and transforming the modifications into application commands.
• Interfacing with the application and sending the commands to the application.

The DirXML driver has the following responsibilities for the publisher channel:

• Interfacing with the application and obtaining its modifications.
• Transforming the modifications into an XML document and sending it to the DirXML engine.

A DirXML driver does not need to understand rules and style sheets because the driver has no
responsibility for rule processing. The DirXML engine is responsible for all rule and style sheet
processing.

1.3.1 DirXML Features
The flexibility and simplicity of DirXML come from the following features.

XML. All eDirectory data and events are exchanged between eDirectory and the application in the
format of XML (eXtensible Markup Language) documents. The use of this popular standard allows
any XML-aware application to easily consume this data. XML is a subset of SGML (Standard
Generalized Markup Language) and more flexible than HTML (Hyper Text Markup Language)
because XML allows tags to be defined by the developer. Novell has used XML to define tags for
such items as objects, attributes, and values. These definitions can be found in the nds.dtd file. This
particular definition of XML tags is referred to as XDS.

Associations. DirXML does not need to share a unique ID with the other application. It uses an
association attribute which links an eDirectory entry to an entry in the external application. The

Rules and Style Sheets

Rules and Style Sheets

DirXML Engine

Application
or

Directory
or

Database

NDS
Database

Subscriber
P

la
ce

C
re

at
e

M
at

ch

E
ve

nt

M
ap

In
pu

t

Publisher

D
ir

X
M

L
 D

ri
ve

r

M
ap

M
at

ch

C
re

at
e

P
la

ce

O
ut

pu
t

E
ve

nt
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
attribute is multivalued, so that each DirXML driver that is synchronizing data with eDirectory can
add its own association. What is placed in the attribute is dependent upon the application. For
example, if the application uses a record number to uniquely identify an entry, the record number is
put in the association attribute. If the application uses a distinguished name, that is used in the
attribute.

Schema Mapping. eDirectory and the other applications will have different schema names for the
same data. A mapping rule per driver allows you to map any eDirectory attribute or class to any
application attribute or class. For example, the eDirectory Surname attribute can be mapped to the
Last Name attribute in one application and to the Family Name field in another application.

Authoritative Data Sources. eDirectory rights and DirXML filters determine which application
has sufficient rights to update an attribute or an entry. For example, if you synchronize with a PBX
application, you can make the PBX DirXML driver the authoritative data source for telephone
number attributes. Other applications with DirXML drivers can obtain updates to these attributes but
they cannot change them in eDirectory.

Create Rules. Each application that is being synchronized with eDirectory might have different
conditions for creating a new entry. The create rules can be configured to list those conditions, and
the DirXML engine will ensure that the entry has values for all the required attributes before it is
created.

For example, eDirectory requires a name, a surname, and an object class to create a User. If the PBX
application requires a first name, surname, telephone number, and location, DirXML ensures the
entry has values for these attributes before it sends a create command to the PBX application.

Selected Data. Most applications store information that is specific to the application. The DirXML
architecture allows the administrator to select only the data that is relevant for sharing: the
eDirectory attributes and classes that correspond to relevant application-specific records and fields.

For example, an HR database would want to share user-type objects with eDirectory, but would not
be interested in network resource objects such as servers, printers, and volumes. eDirectory would
want to share a user's given name, surname, initials, telephone numbers, and work location, but
would probably not be interested in storing the user's family information and employment history
(unless another eDirectory application needs access to this information). If eDirectory does not
currently have classes or attributes for the shared data, the eDirectory schema can be extended to
include them. In this example, eDirectory becomes the repository of information that eDirectory
needs and which other applications can use. The application remains the repository for the
information that is required only by the application.

Data Transformations. DirXML uses the Extensible Stylesheet Language Transformation (XSLT)
as a mechanism for data transformation. For example, if one external application stores date
information in a day-month-year format, an XSL transformation rule can ensure that date
information that is stored in a month-day-year format is converted before sending it to the external
application. XSL is an extensible language that allows driver developers and system administrators
to supply plug-ins for data transformations not covered in the basic language.

DirXML Engine. The DirXML engine is responsible for eDirectory communication, schema
mapping, rule enforcement, and data filtering. Since the engine does most of the work, the DirXML
driver, in comparison, is relatively simple and direct.
DirXML and DirXML Drivers 23

24 NDK: Novel

novdocx (E
N

U
) 01 February 2006
1.3.2 DirXML Engine and Driver Interaction
The DirXML engine is the key module in the DirXML architecture and provides the interface that
allows DirXML drivers to synchronize external application information with eDirectory. The
DirXML engine is the module that communicates directly with eDirectory and converts the
eDirectory data into XML format.

This section covers the following topics:

• “Subscriber Channel” on page 26
• “Publisher Channel” on page 26
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The following graphic illustrates the interactions among the DirXML engine, eDirectory, a DirXML
driver, and an external application.

Figure 1-2 DirXML Interactions

When eDirectory initializes, it reads the event filter, registers the driver for the appropriate
eDirectory events, filters the data according to the filter's specification, and sets up a cache for the
events. eDirectory then notifies the DirXML engine when an event occurs. eDirectory events are
local to the server; they are not global to the eDirectory tree. Therefore, the DirXML engine receives
only the modifications from local replicas. If user data is modified on a partition that does not reside
on the local server, DirXML is not notified of the modifications. The eDirectory server with the
DirXML engine must be configured to contain replicas of all the objects that are being synchronized
with the external application.

D
irX

M
L

 D
river

NDS

NDS
Event

Event
Filter

Event
Cache

NDS
to

XDS

XDS
to

APP API

Event
Transform

Rule?

XDS
Command?

No

No

No

Yes

YesYes

No

Associated?
Yes Mapping

Rule
Output

Transform

E
xtern

al A
p

p
licatio

n

Subscriber

Publisher

Event
APP API

to
XDS

Event
Transform

Rule?

XDS
Command?

No

No

No

Add
Command?Associated?

Yes

Yes Yes

NoYes

Rules

Mapping
Rule

Input
Transform

XDS
to

NDS

Add
Command?

Rules

DirXML Engine

Start
DirXML and DirXML Drivers 25

26 NDK: Novel

novdocx (E
N

U
) 01 February 2006
eDirectory 8.5 adds a new type of replica for filtering data. Filtered replicas allow you to select
which object types (for example, Users) and which attributes (for example Surname, Given Name,
CN, and Telephone Number) a replica contains. Other object types such as Printers and Servers and
User attributes such as Title or Manager are not included in the filtered replica. With eDirectory 8.5,
the server running DirXML can be set up with replicas that include the data specified in the DirXML
filter and rules.

When the DirXML engine receives the eDirectory events, it reads the rules you have set up for the
subscriber (event transformations, matching, placement, create, mapping, and output
transformations) and sends the data to your subscriber channel.

The subscriber channel of the DirXML driver receives the XML data from the DirXML engine,
converts it to the application's APIs, and sends it to the external application.

The publisher channel of the DirXML driver checks for events in the external application, converts
the events into XML, and sends the XML to the DirXML engine. The engine applies the rules,
changes the XML to eDirectory commands, and sends them to eDirectory.

Subscriber Channel

The subscriber portion of your driver sends changes from eDirectory to your application. It is the
object that implements the SubscriptionShim interface and is responsible for the following tasks:

• Data Conversion. Your driver needs to convert the XML data to a format that the external
application can use. This tool kit includes the nds.dtd file which contains the XML definitions
for the input and output commands and for the rules (matching, creation, placement, and
mapping). You can also use an output transformation style sheet to help in the conversion. If
possible, all data conversion should be handled in rules and style sheets because these can be
modified to match a particular installation of the external application. If the driver handles the
data conversion, modifications to the process require recompiling the driver.

• Data Sending. The driver needs to use the interface of the external application to send the data
to the application. The driver should not return to the DirXML engine until the application
returns a response or a reasonable timeout expires.

• Response Handling. The driver needs to convert the response from the application into an
XDS document and return it to the DirXML engine.

The DirXML engine is responsible for filtering the eDirectory data, converting it to XML, and
applying the event transformations, rules, and output transformations. Event transformations can be
used to change an XDS command (such as modify) to another XDS command (such as add). As a
driver developer, you can also use an event transformation to change an XDS command into a non-
XDS command understood by your application. The DirXML engine does not apply matching and
create rules to non-XDS commands but sends them to the schema mapping rules and then to your
driver.

Publisher Channel

The publisher portion of the driver performs the gathering and sending of updates from the external
application to eDirectory. It is the object that implements the PublicationShim interface. The
following tasks are driver-implementation specific.

• Changes. Your driver needs to be informed of changes to the information in the external
application.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• Filtering. Once your driver has gathered the changed information, it should filter it to the
correct set of data so that only data being shared is sent to eDirectory. If your driver doesn't
filter the data, eDirectory will filter and discard the data that doesn't apply. However, system
resources are used more efficiently when the driver filters the data.

• Converting. Your driver needs to convert the data from the application's commands to XDS
format and then send the data to the DirXML engine. If the application uses XML, you can use
input transformations to change from the application's XML to XDS.

• Sending. Your driver sends the data to the DirXML engine and receives an XML response
document.

Once the data is sent to the DirXML engine, the DirXML engine is responsible for applying the
rules and sending it to eDirectory. The event transform rules can be used to transform one XDS
command into another. They can also convert an external application event into an XDS command.
However, if the event is transformed to a format other than XDS, the DirXML engine drops it (the
black hole in the figure) and returns an error.

eDirectory responds to the DirXML engine which converts the response to an XML document. The
mapping rules, style sheets, and your driver convert the response to a format that you can send to the
external application as completion codes, if necessary.

1.3.3 Driver Interaction with eDirectory Objects and Attributes
The DirXML driver has two main entities with which it communicates: the DirXML engine and the
external application. However, the driver is affected by information stored in a number of eDirectory
objects. The DirXML engine interacts with these eDirectory objects. It knows which objects belong
to your driver and uses the object information to modify the XDS formatted document that is sent to
your driver. For a definition of the DirXML classes and attributes, see Appendix B, “DirXML
Definitions for the Schema,” on page 259.

The following DirXML attributes and objects are used to modify the document's contents.

• Filter Attribute for the Subscriber. The DirXML engine registers your driver for a standard
set of eDirectory events: create object, delete object, rename object, add attribute value, delete
attribute value, and move object. The eDirectory server reads the subscriber filter to restrict the
data to the object classes and attributes specified in the filter. For example, if the configuration
is intended to synchronize only user information, the filter would specify User objects and
modification to other eDirectory objects would be ignored. From the possible User class
attributes, the filter would specify selected attributes, such as CN, Given Name, Surname, and
Telephone Number. Modifications to other user class attributes would be ignored.

Although your driver never reads the subscriber filter or interacts directly with it, the contents
of the filter affects your driver because the filter determines what data is sent from eDirectory
to your driver.

The subscriber filter is a DirXML-DriverFilter attribute of DirXML-Subscriber objects.
• Filter Attribute for the Publisher. The DirXML engine uses the publisher filter to ensure that

the data it receives from the external application matches the data types specified in the filter.
This filter is passed as part of the initialization data so that the driver can filter the events
coming from the application to match the data defined in the filter.
The publisher filter is a DirXML-DriverFilter attribute of DirXML-Publisher objects.
DirXML and DirXML Drivers 27

28 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• Association Attribute. This attribute is an optional attribute for every object in the eDirectory
tree. It associates an eDirectory entry with an entry in the external application. Well-designed
matching rules automate the creation of associations between existing entries in eDirectory and
the application. On add operations, the DirXML driver returns an association as part of an add
command and includes an association as part of an add event.

• Matching Rule Object. Matching rules determine how objects in eDirectory are associated
with records in the external application when an association has not already been established.
The administrator sets these up, and they determine which attributes and values must match
with which fields and values in the external application. For example, the eDirectory
administrator can set the rule up so that a User's Surname, Given Name, and Telephone
Number attributes must match a Record's Last Name, First Name, and Phone fields before the
DirXML engine can automatically create an association.

• Create Rule Object. Create rules specify what information eDirectory or the application must
have before creating a new object or entry. In the rule, the administrator specifies the attributes
that must have values, for example, last name, first name, phone number, and login name. This
rule can be the same for both the subscriber and the publisher or different. In other words, one
application can require more information than the other for creation to succeed.

• Placement Rule Object. Placement rules determine where new objects are placed in the
application. Each driver typically requires at least two placement rules. The publisher needs to
know where to created new eDirectory objects when the external application creates a new
object, and the subscriber needs to know where to create an external application object when a
new object is created in eDirectory. You can have multiple rules. Since eDirectory is
hierarchical, multiple rules are useful because they allow you to create objects in multiple
containers.

• Mapping Rule Object. Mapping rules determine how eDirectory class and attribute names
are mapped to application's class and attribute names. For example:

• Configuration Attribute. The DirXML-ShimConfigInfo attribute is an XML file that
contains any configuration options which a network administrator needs to set for the driver,
the subscriber, and the publisher. They are optional, but if you select to use them, your driver
initialization code needs to parse the commands that are sent in an XDS init document.

• Style Sheet Objects. Style sheets are for event, input, and output transformations and may be
used for any of the other rules.

For more information on the eDirectory objects and attributes, see Appendix B, “DirXML
Definitions for the Schema,” on page 259.

For more information about the rules, filters, and style sheets, see “Introduction to the Rules and
Filters” on page 103.

User class with Client class

Given Name attribute with First Name attribute

Surname attribute with Last Name attribute

Initials attribute with Middle Initial attribute
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
1.4 DirXML and Multiple Directories
Most companies have anywhere from 20 to 200 directories, with the “average” company having
180. How many depends upon your network configuration, applications, and number of operating
systems. In most companies, the telephone system, human resources, e-mail, and each operating
system will have their own directories. Keeping user information current in all of them requires
multiple administrators and data entry for each directory. DirXML is designed to eliminate such
duplicate data entry.

For example, if your company first enters newly hired employees in a human resource database, the
DirXML driver that connects that database to eDirectory can be configured to create new users in
eDirectory and place them in the appropriate container in the tree based on the department that hired
them. Then, when the employee moves to another department and to a different container,
eDirectory sends these changes to DirXML which sends them to the human resource database. The
change needs to be made in only one database, and the other database is automatically updated.

If multiple applications are using DirXML to synchronize with eDirectory, DirXML synchronizes
shared data with all the applications. The following figure illustrates a configuration with six
DirXML drivers.

Figure 1-3 Sample DirXML configuration with six drivers

Driver 1. The NDS to Exchange driver synchronizes data with eDirectory Tree1.

Driver 2. The NDS to NDS driver synchronizes data from eDirectory Tree1 to eDirectory Tree2.

Driver 3. The NDS to Active Directory driver synchronizes data with eDirectory Tree1, the NDS to
NDS driver synchronizes the data to eDirectory Tree2, and the NDS to Exchange driver
synchronizes it to Exchange.

Driver 4. The NDS to Notes driver synchronizes data with eDirectory Tree2.
DirXML and DirXML Drivers 29

30 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Driver 5. The NDS to NDS driver synchronizes the data from eDirectory Tree2 to eDirectory Tree1,
the NDS to Exchange driver synchronizes the data to Exchange, and the NDS to AD driver
synchronizes it to Active Directory.

Driver 6. The NDS to Netscape driver synchronizes the data with eDirectory Tree2 and the NDS to
Notes driver synchronizes it to Notes. The NDS to NDS driver synchronizes the data to eDirectory
Tree1, the NDS to Exchange driver synchronizes the data to Exchange, and the NDS to AD driver
synchronizes it to Active Directory

If a change occurs in one application, that change is propagated to the others. For example, if a user
name is changed in the Netscape directory, the DirXML drivers propagate the change to the other
five applications: Active Directory, eDirectory Tree1, eDirectory Tree2, Notes, and Exchange.

1.5 Designing the Driver
The first step in designing a driver is to obtain a thorough understanding of the application for which
you are writing a driver. You need to understand its application programming interface, security
system, schema, procedures for change notification, operating system requirements, and remote
protocol support. An in depth knowledge of an application will allow you to design a simple and
efficient driver.

As you design your driver, you need to plan on a method to handle the following:

Data conversion. Your driver design should aim to make the driver a pipe with as much data
conversion handled with rules and style sheets as possible. You can modify the rules and style sheets
to change data conversion in a particular environment, and such modifications do not require
recompiling the driver. If data conversion is handled by the driver, you may need to modify the data
conversion code and recompile the driver to make it work in a particular environment.

Remote communication. The DirXML driver either runs on the server or is loaded using a remote
loader. To use a remote loader, no changes are necessary. DirXML runs on NetWare, NT, Solaris,
and Linux. If your application does not run on one of these operating systems, you must design your
driver for remote communication. If your application supports a directory protocol such as LDAP,
you can use that protocol for remote communication.

Passwords. To access the external application, your driver may need to log in. DirXML can be used
to store the login information, and DirXML encrypts the application's password before storing it in
eDirectory. DirXML engine version 1.1 DirXML and later can synchronize user passwords between
eDirectory and the external application. For versions earlier than 1.1 use Novell Single Sign-on
(http://developer.novell.com/ndk/ssocomp.htm) for password solutions.

Loopback detection. The DirXML engine has been designed to detect application loopback. It
ensures that a change sent by your driver to eDirectory is not sent back to your driver as a change
needed in your external application. Your driver is responsible for eDirectory loopback. It should
ensure that a change sent by eDirectory to your driver is not sent back by your driver as a change
needed in eDirectory.

Driver filter. The DirXML engine has been designed to filter changes so that the commands only
contain the attributes and classes specified in the filter. However, DirXML runs more efficiently
when each driver uses its filter to determine what data should be sent to the DirXML engine. If your
application is remote, the filtering should be enforced, if possible, on the remote machine so that the
eliminated data is not sent across the wire.
l Identity Manager (DirXML) Driver Kit

http://developer.novell.com/ndk/ssocomp.htm

novdocx (E
N

U
) 01 February 2006
Data gathering. Your driver needs to use the most efficient and stable method for determining
what has changed in the external application. If the application has an event system, you can use the
event system to register for the events and efficiently obtain modification of changes. However, if
the external application does not have an event system, you will need to implement another method.
Many applications generate a log file of changes, and you can use the file to determine what has
changed and to track what changes your driver has made and what changes are new. The
disadvantage of using a log file is its format often varies from release to release. Since most
application vendors view data sharing as a positive feature, work with the vendor's technical support
department to determine the best method.

Schema differences. You need to be very familiar with the schema for both eDirectory and the
external application, and you will need to design your driver to handle the differences. For example,
an eDirectory attribute definition can flag an attribute as naming, single-valued, or multi-valued. If
your external application has no concept of any of these, your driver must be designed to handle the
differences.

The class definitions that are being mapped (such as User in eDirectory and System User in the
external application) will probably contain different attributes. DirXML does not require that both
applications share the same definition, only that both definitions contain the attributes that are going
to be synchronized. If the eDirectory schema does not contain required attributes, you can extend the
schema. Novell recommends using auxiliary classes rather than adding attributes to existing classes.
(For more information, see the NDS Schema Reference.)

Attributes will often have different formats for the information. Where possible, you should use
style sheets to handle the data transformation.

1.6 Where to Get Started

Chapter Purpose

Chapter 2, “Writing a DirXML Driver,” on page 33 Shows how to add the required classes and methods
to a skeleton driver.

Chapter 3, “Debugging the Driver,” on page 95 Describes how to debug both a C++ and Java driver.

Chapter 4, “Introduction to the Rules and Filters,”
on page 103

Provides an overview of the rules. For a description
of the DTD elements, see Chapter 8, “Rule
Reference,” on page 203.

Chapter 6, “Driver Installation,” on page 115 Describes the installation requirements for a driver.

Chapter 7, “eDirectory DTD Commands and
Events,” on page 117

Describes the command and event elements in the
NDS DTD.
DirXML and DirXML Drivers 31

32 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

2
novdocx (E

N
U

) 01 February 2006
2Writing a DirXML Driver

This chapter describes the basic requirements and architecture needed to write a DirXML® driver
that supports synchronizing data between an application or directory and eDirectory.

A DirXML driver is compiled code written in either Java or C++ that performs the communication
between the DirXML engine and an application. Also referred to as a shim, the driver is invariant
between installations and installation-specific requirements are addressed by DirXML rules and
filters.

2.1 Driver Overview
A DirXML driver serves primarily as a data pipe between the DirXML engine and the application.
As such, the driver is not responsible for decisions about what data to synchronize and when to
synchronize the data. In general, the driver receives commands from the DirXML engine that
instruct the driver to modify the application, and the driver reports data events occurring in the
application to the DirXML engine.

Decisions about what data to synchronize and how to synchronize the data are specified on an
installation-specific basis by the system administrator through filters and rules.

A general application driver should be written such that all data in an application can be
synchronized with eDirectory if the DirXML rules and filters specify it.

The following sections describe

• Driver Communication and Threads
• Driver Life Cycle

See the Driver FAQ (../ref/index.html) for a list of Frequently Asked Questions about driver
development.

2.1.1 Driver Communication and Threads
There are two channels of communication between the DirXML engine and the DirXML application
driver: the subscriber channel and the publisher channel. The subscriber channel is used for sending
commands from the DirXML engine to the application driver; for example, the application
“subscribes” to changes from eDirectory. The Publisher channel is used for sending events from the
application driver to the DirXML engine; for example, the application “publishes” changes in the
application to eDirectory.

Conceptually, the DirXML driver has (and is typically implemented as) three objects: the driver
object, the subscriber object, and the publisher object. The driver object is responsible for
initialization that is common to both channels, creating the subscriber object and the publisher
object, and for shutting down the driver when instructed by the engine to do so. Each object has an
interface it is responsible for implementing. The publisher object typically implements the
XmlQueryProcessor interface as well.
Writing a DirXML Driver 33

../ref/index.html

34 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Table 2-1 DirXML Interfaces

Each channel of communication runs on separate threads of execution, referred to as the subscriber
thread and publisher thread.

The subscriber thread is the thread on which

• The driver object is constructed
• The driver object methods are called
• The subscriber methods are called

The subscriber thread spends most of its time in DirXML engine code waiting for eDirectory events.
When an eDirectory event occurs, the engine processes the event according to the DirXML rules
and, depending on the result of the rule processing, may issue a command to the driver on the
subscriber channel by calling the subscriber object’s execute method. The DirXML engine also uses
the subscriber thread to instruct the driver to shut down by calling the driver object’s shutdown
method. The driver object’s shutdown method is responsible for causing the publisher thread to
return from the publisher object’s start method.

The publisher thread is the thread on which the publisher methods are called. The publisher thread
spends most of its time in the publisher object’s start method. When an application change is
detected, the publisher object calls the DirXML engine to inform the engine of the event using an
object passed to the start method.

2.1.2 Driver Life Cycle
There are two separate modes of operations that a driver object must support:

• Normal synchronization
• Schema query

A single driver instance will only be required to operate in a single mode. For example, if a driver
instance is constructed and the getSchema method of the DriverShim interface is called, no normal
synchronization methods are called on that driver instance. Similarly, if a driver instance is
constructed and the init method of the DriverShim interface is called, the getSchema method is
never called on that driver instance.

Each time a driver is run, a new instance is obtained. In addition, multiple instances of the same
driver may run on a single DirXML server (synchronizing different instances of the application, for
example). The application driver should have no modifiable global or static data. Global or static

Interface Name Java Name C++ Name

DriverShim com.novell.nds.dirxml.driver.DriverShim DriverShim in
NativeInterface.h

SubscriptionShim com.novell.nds.dirxml.driver.SubscriptionShim SubscriptionShim in
NativeInterface.h

PublicationShim com.novell.nds.dirxml.driver.PublicationShim PublicationShim in
NativeInterface.h

XmlQueryProcessor com.novell.nds.dirxml.driver.XmlQueryProcessor XmlQueryProcessor in
NativeInterface.h
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
data may prevent your driver from operating properly when it is started, stopped, and then started
again. Such data may also prevent the driver from operating properly when multiple instances are
running on the same server.

The life cycle of a driver instance for normal synchronization is as follows.

A driver instance used for a schema query has the following life cycle.

Subscriber Thread Publisher Thread

1. The driver object is constructed.

• For a Java driver, the engine calls the driver’s
no-argument constructor.

• For a C++ driver, the engine calls the driver’s
CreateDriver function.

2. The engine calls the driver object’s init method.

3. The engine calls the driver object’s
getSubscriptionShim method.

4. The engine calls the driver object’s
getPublicationShim method.

5. The engine calls the subscriber object’s init
method.

1. The engine calls the publisher object’s init
method.

2. The engine calls the publisher object’s start
method.

6. The engine calls the subscriber object’s execute
method, zero or more times.

3. The publisher object calls the DirXML engine
via the XmlCommandProcessor object that was
passed as a parameter to the start method, zero
or more times.

7. The engine calls the driver object’s shutdown
method.

4. The publisher thread returns from the start
method after notification from the subscriber
thread.

8. For a C++ driver, the engine calls the driver
object's destroy method. For a Java driver, the
engine makes the driver object available for garbage
collection.

Subscriber Thread Publisher Thread

1. The driver object is constructed.

• For a Java driver, the engine calls the driver’s no-argument constructor.

• For a C++ driver, the engine calls the driver’s CreateDriver function.

Not used.

2. The engine calls the driver object’s getSchema method.

3. For a C++ driver, the engine calls the driver object's destroy method. For a Java
driver, the engine makes the driver object available for garbage collection.
Writing a DirXML Driver 35

36 NDK: Novel

novdocx (E
N

U
) 01 February 2006
2.2 Getting Started
The following sections describe the decisions you need to make before you start coding:

• Application Requirements
• Language—C++ or Java
• XML Interface

2.2.1 Application Requirements
Writing an application driver for DirXML requires a thorough understanding of the target
application, including the application’s schema, APIs, authentication, and access requirements. The
following areas must be considered.

Application Programming Interfaces (APIs). The APIs of an application are the methods through
which your driver will communicate with the application for the purposes of modifying and
querying data. These may include access methods such as LDAP or direct function calls through an
application-supplied library. The choice of API (when there is one) affects how your driver can be
used. For example, if your application supports both a function-call interface and an IP interface,
choosing the function-call interface may restrict your driver to running on the same physical server
as the application.

Authentication or Log on. Many applications require both users and programs to authenticate or
log on to the application before data may be accessed. You must be familiar with the authentication
requirements of your application. DirXML provides a secure way to store an application's password
in eDirectory on behalf of your driver, and provides standard locations for specifying other
connection and authentication parameters which are passed to your driver as part of the initialization
procedure.

Change Notification Mechanism. Publishing data to eDirectory from the application requires
determining when data change in the application. The application may support an event notification
system or a polling mechanism. The application may not directly support any method of
notification; in such cases you will have to design a method using the tools the application provides.

Association Values. A DirXML association value is a value that uniquely identifies an object or
record in the application. The association value can be anything that uniquely identifies the object; it
is most convenient if the value is invariant, such as a record number or a GUID (Global Unique
Identifier). However, it is possible to use values that change (such as a distinguished name) but your
driver must be carefully written to inform DirXML when such an association value changes by
publishing a <modify-association> event with the old and new association values. Examples of
association values used by Novell-written drivers include the following: GUID (NDS to NDS and
Active Directory drivers), DN (iPlanet directory server driver), and User Name (NT 4 domain
driver).

2.2.2 XML Interface
The Extensible Markup Language (XML) is a standard issued by the World Wide Web Consortium
that describes how data are marked up using application defined tags and attributes. All
communication of data between the DirXML engine and the application driver is in the form of
XML documents. An XML document is a collection of data, tree-like in structure, with the data
being marked by XML tags and attributes.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML supports two standard interfaces for accessing and manipulating XML data: the Document
Object Model (DOM) and the Simple API for XML (SAX). In addition, DirXML provides access to
XML documents in serialized form. Serialized XML, however, is the least convenient way of
representing XML data for programmatic use.

The DOM presents a tree-like view of the XML document and is typically the most convenient way
to access and manipulate XML data programmatically. SAX presents XML documents as a series of
events for which handlers are registered. SAX is typically used when only a small part of an XML
document is interesting and when navigation among the XML data is not required.

Novell also provides an API designed to make handling DOM documents much easier, called XDS
Libraries. The elements in a DOM tree are abstracted to a Java API making it easier to access XML
data, as well as construct valid xml documents and driver parameters.

The following table outlines several advantages and disadvantages to each XML interface. There are
also many resources on the Internet to aid in determing which XML interface better suits your driver
requirements.

The XML documents used for communication between the DirXML engine and the application
driver have well-defined tags and attributes for describing the data. The "flavor" or "dialect" of
XML used is specific to DirXML and is often referred to as XDS (XML Directory Services).

2.2.3 Language—C++ or Java
You must decide whether to write your application driver in Java or in C++. In general, Java is the
preferred choice because using Java allows your driver to run on all of the platforms on which
DirXML runs. For example, the Novell NDS to NDS driver is written in Java and runs unchanged
(using the same .jar file) on all of the platforms on which DirXML runs (currently Windows NT,
Windows 2000, Netware 5.x, Solaris, and Linux).

In addition, choosing Java as your implementation language relieves you of the memory
management issues associated with C++.

However, there are instances where writing a C++ driver makes more sense. Reasons may include
the lack of a suitable interface to the application easily usable from Java or application programming
tools provided only in C or C++.

XML Interface Advantages Disadvantages

DOM • Tree model is more intuitive

• More convenient data access

• Often requires more memory

SAX • Requires less memory

• Event driven model can be faster
and more efficient

• Difficult to randomly access data

• Event driven model is less-intuitive

XDS Libraries • Document and driver parameter
validation

• Increased stability

• Reduced complexity and
development time

• Reduced driver memory signature
(Java only)

• Does not support SAX

• Non-standard Interface

• Increased processing and memory
overhead
Writing a DirXML Driver 37

38 NDK: Novel

novdocx (E
N

U
) 01 February 2006
C++ Considerations

The interfaces that your driver must implement are found in the header file NativeInterface.h.

The DirXML SDK provides a number of utility functions to perform common tasks necessary in
your driver. These include factory functions for creating concrete implementations of various
DirXML interfaces and support for creating DirXML-specific XML documents. The utility
functions may be found in the following header files: InterfaceFactory.h, Trace.h,
NdsDtd.h, Base64Codec.h, UTFConverter.h, and DriverFilter.h.

There are no standard language bindings for the DOM and SAX to C++. Therefore, Novell provides
a binding for these two interfaces. The language binding for DOM is found in dom.h. The language
binding for SAX is found in sax.h. Factories for creating concrete DOM objects and SAX
implementations are found in InterfaceFactory.h.

In order to use the factories and utility functions it is necessary to link your application with the
appropriate import library for your platform.

For more information about these functions, see XML Interfaces for C++.

Java Considerations

The interface definitions and utility classes provided by DirXML are found primarily in the package
com.novell.nds.dirxml.driver. In addition, many useful classes may be found in the
XML/XSLT support packages such as com.novell.xml and descendants. For more information,
see the javadocs (../ref/index.html).

There are standard language bindings for the DOM interface and for the SAX interface supported by
DirXML. These bindings are found in org.w3c.dom and org.xml.sax.

The DirXML classes are found in dirxml.jar and nxsl.jar; you will need to include these
.jar files in your class path.

You should compile your Java driver against JDK version 1.1.7b because that is the latest version of
Java supported on NetWare at the time of the initial DirXML release. This means that you cannot
use Java 2 features if you want your driver to run on NetWare systems.

Note that in DirXML 1.1, you can add a new jar file without shutting down eDirectory. You will still
need to shut down eDirectory to update an existing jar file.

2.2.4 Overview of the Process
The following sections outline the suggested steps for writing a DirXML driver. The instructions
start with setting up the skeleton driver, which is used as sample code for the rest of the instructions.
The instructions then explain how to develop the driver object and the required interfaces:

• Section 2.4, “Constructing the Driver Object,” on page 42

Library Platform

dirxmllib.lib Win32 (NT and Windows 2000)

dirxml.imp NetWare

libdirxml.so Solaris, Linux, and Tru64 Unix
l Identity Manager (DirXML) Driver Kit

../ref/index.html

novdocx (E
N

U
) 01 February 2006
• Section 2.5, “Implementing the DriverShim Interface,” on page 43
• Section 2.6, “Implementing the SubscriptionShim Interface,” on page 58
• Section 2.7, “Implementing the PublicationShim Interface,” on page 71
• Section 2.8, “Implementing the XmlQueryProcessor Interface,” on page 81

Novell recommends developing the subscriber channel first since this channel will help you work
out communication issues with the application, schema differences, and the conversion of XML
commands to application commands. The publication channel requires you to deal with these issues
as well as ensuring that the XML documents created by your driver include all the required
information.

This chapter also includes information about the following topics:

• Section 2.9, “Dealing with XML Documents,” on page 83
• Section 2.10, “Driver State,” on page 87
• Section 2.11, “Driver Configuration,” on page 88
• Section 2.12, “Additional Tips for C++ Drivers,” on page 91

2.3 Starting with the Skeleton Driver
Novell provides a "skeleton" driver as a place to start writing a driver. The skeleton driver is
implemented in both Java and C++, and basic or XDS Library-enabled; the implementations are
functionally equivalent. The sample code in this chapter is primarily from the skeleton driver
implementations.

The recommended way of starting to write an application driver is to start with the skeleton driver
code.

• For a Java driver, you must rename the classes to reflect your driver and it is recommended that
you put your code in an appropriate package. If this is not done, you may find that your driver
conflicts with another driver in an installation if both drivers are based on the skeleton driver
and neither changes class names or packages.

• For a C++ driver, you should rename the .dll, .nlm, or shared library to avoid potential
conflicts.

The skeleton driver implements all of the required interfaces and demonstrates how various driver
tasks are done. For example, the init methods parse initialization parameters, the PublicationShim
start method implements a polling loop, and the SubscriptionShim execute method demonstrates
how to parse the XML command documents.

Studying the skeleton driver code before starting on your driver is highly recommended. The
following table lists the location of each skeleton driver:

Driver Location

Java Skeleton [install
root]\samples\skeletondriver\dom\java\com\novell\nds\dirxml\driver\skeleto
n

C++ Skeleton [install root]\samples\skeletondriver\dom\cpp
Writing a DirXML Driver 39

40 NDK: Novel

novdocx (E
N

U
) 01 February 2006
2.3.1 Setting Up a Skeleton Driver Instance to Run
As a starting point, you should install a skeleton driver instance (Java or C++, depending on your
language choice, and basic or XDS enabled). Since these drivers do not come with an installation
program, you will need to copy the driver executable to the server and then use ConsoleOne to
create the eDirectory objects and configure the driver. To install the driver, complete the following
steps.

1 Copy the driver executable to the server.
• For the Java skeleton driver, copy the vr_skel.jar to the lib directory.

On NetWare, this is the sys:\system\lib directory.
On Windows, this is usually the c:\novell\nds\lib directory.
On Unix, copy skeleton.jar to the /usr/lib/dirxml/classes directory.

• For the XDS libraries Java skeleton driver, copy the XDS.jar and
XDSSkeletonShim.jar to the lib directory.

• For the C++ Windows driver, copy the CSkeletonDriver.dll to the eDirectory
folder. This is usually the c:\novell\nds directory.

• For the XDS Libraries C++ Windows driver, copy the CppSkeletonDriver.dll to
the eDirectory folder. This is usually the c:\novell\nds directory.

• For the C++ NetWare driver, copy the skeldrvr.nlm to the sys:\system directory.
• For the C++ Unix driver, copy libcskeldrv.so to the /usr/lib/nds-modules

directory
2 During the creation process select the following XML driver configuration file.

• For the Java skeleton driver, this is the j_skel.xml file.
• For the C++ skeleton driver, this is the c_skel.xml file.
• For the XDS Libraries Java skeleton driver, this is the JavaXDSSkeleton.xml file.
• For the XDS Libraries C++ skeleton driver, this is the cpp_skel_options.xml file.

2.3.2 Compiling the Java Skeleton Driver
To compile the Java skeleton driver on NetWare and Windows, complete the following steps.

1 Place the following skeleton java files in a separate directory

SkeletonDriverShim.java
SkeletonPublicationShim.java
SkeletonSubscriberShim.java
CommonImpl.java

XDS Library Java Skeleton [install
root]\samples\skeletondriver\xds\java\com\novell\nds\dirxml\driver\xds\skel
eton

XDS Library C++ Skeleton [install root]\samples\skeletondriver\xds\cpp

Driver Location
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The three *Shim files define the main classes to which you will add code.
2 Copy the following files to the same directory that you put the skeleton source files:

vrd.jar
nxsl.jar

3 Compile the java files into classes.
4 Jar them into a jar name of your choice.
5 Copy your jar into an eDirectory “lib” directory.

For Win32 platforms, this is usually the c:\novell\nds\lib directory.
For NetWare, this is sys:\system\lib directory.
The driver initialization code looks for jars in the “lib” directory. If you use classes instead of
jars then the driver initialization code looks in the “classes” directory on the same level as the
“lib” directory.

To compile the Java skeleton driver on Unix, complete the following steps.

1 Make changes to the source files in the Ndk/samples/dirxml_samples/Java/skeleton directory.
2 Set the PATH variable.

• On Linux systems set PATH=[base path for JDK1.1.8]/bin.
• On Solaris systems set PATH=[base path for JDK1.1.8]/bin.
• For Tru64 Unix systems set PATH=[base path for JDK1.1.8]/bin.

3 Compile the sources into classes and jar them. A Makefile is provided for compilation.
4 Copy the jar file into the /usr/lib/dirxml/classes directory.

2.3.3 Compiling the C++ Skeleton Driver
You will need to link the skeleton driver to the DirXML library for your platform. The DirXML
SDK provides the following libraries in the \C\lib directory:

The header files are found in the \C\inc directory.

Complete the following steps for NetWare and NT (Win32).

1 Using the header files, compile the skeleton driver into a DLL for an NT server or an NLM for
a NetWare server.

2 Copy the driver to the appropriate directory on the eDirectory server:

On NetWare, to the sys:\system directory
On NT, to the Novell\nds directory (or the location of the DHost.exe file)

Library Platform

dirxmllib.lib NT (Win32)

dirxml.imp NetWare

libdirxml.so Solaris, Linux, and Tru64 Unix
Writing a DirXML Driver 41

42 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Complete the following steps for Unix.

1 Make changes to the source files in the Ndk/samples/dirxml_samples/C/skeleton
directory.

2 Using the header files in the C/include directory, compile the skeleton driver into a shared
library. A Makefile is provided.

3 Copy the driver to the appropriate directory.

2.4 Constructing the Driver Object
Each time an application driver is run, the DirXML engine obtains a new instance of the
DriverObject. A Java driver is constructed by calling a no-argument constructor. A C++ driver is
constructed by calling the CreateDriver function that is exported from the driver module (such as a
DLL, NLM, or shared library).

The DirXML engine starts the driver. The DirXML driver stores the name of its executable in one of
the attributes of its DirXML-Driver object. If the driver is a Java application, it stores the name in
the DirXML-JavaModule attribute. If the driver is a native module (DLL, NLM, or shared library),
the driver stores the name in the DirXML-NativeModule attribute.

2.4.1 Java Constructor
The following sample code illustrates how to create the constructor for the driver.

public SkeletonDriverShim ()

2.4.2 CreateDriver Function for C++
Your driver module must export a factory method for creating a new instance of your driver object.
The factory method must be exported by name.

The CreateDriver function has the following syntax:

 DriverShim * CreateDriver(
 void);

On Win32 platforms, one of three names may be used (due to compiler name generation):
"CreateDriver", "_CreateDriver", or "_CreateDriver@0". The following sample code illustrates how
to create the function for the Win32 platforms.

extern "C" CSKELETONDRIVER_API DriverShim * METHOD_CALL
CreateDriver(void)
{
 return new CSkeletonDriver();
}

On Netware the function name must consist of "CreateDriver" with the uppercase name of the NLM
appended to it. For example if the driver NLM is named COOLDRVR.NLM then the exported name
must be "CreateDriverCOOLDRVR"). The following code illustrates how to create the function for
the NetWare platform.

extern "C" DriverShim *
CreateDriverSKELDRVR()
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
{
 DriverShim * shim = new NW_DriverShim();
 //add to our housekeeping stuff
 addShim(shim);
 return shim;
}

2.5 Implementing the DriverShim Interface
The DriverShim interface consists of five methods in Java and six methods in C++:

• DriverShim init—performs channel-independent initialization.
• DriverShim getSubscriptionShim—returns a reference (Java) or pointer (C++) to the object

implementing the SubscriptionShim interface.
• Driver getPublicationShim—returns a reference (Java) or pointer (C++) to the object

implementing the PublicationShim interface.
• DriverShim shutdown—notifies the driver to disconnect from the application, cleanup, and

otherwise shutdown.
• DriverShim getSchema—called to obtain a representation of the application schema.
• DriverShim destroy (C++ only)—called to free all resources used by the driver, including the

driver object itself.

Each of these methods is described in detail in the following sections.
Writing a DirXML Driver 43

44 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DriverShim init
Initializes the DirXML driver object.

Syntax

Java

XmlDocument init(
 XmlDocument initParameters);

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL init(
 XmlDocument *initParameters);

Parameters
initParameters

(IN) Points to an XML document that contains the initialization data for the DirXML driver.

Return Values
Returns an XML document containing a status report on the initialization process. The status can be
"success", "warning", "error" or "fatal". If "fatal" is returned, the driver start is aborted.

Remarks
The init method in the driver is typically where the subscriber and publisher objects are created. It is
also where the initialization parameters are parsed for channel-independent configuration
parameters such as application server name or IP address and for authentication parameters required
for logging in to the application.

The initParameters argument is an XML document containing initialization data such as
authentication information, driver-specific parameters, and driver state. The format of individual
driver-specific parameters and driver state are specific to your driver.

When the DirXML engine calls the DriverShim init method, it sends an XML document similar to
the following.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <init-params src-dn="\PERIN-TAO\novell\Driver Set\Java Skeleton
Driver">
 <authentication-info>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <server>server.app:400</server>
 <user>User1</user>
 <password><!-- content suppressed --></password>
 </authentication-info>
 <driver-options>
 <option-1 display-name="Sample String option">
This is a string</option-1>
 <option-2 display-name="Sample int option (enter
an integer)">10</option-2>
 </driver-options>
 </init-params>
 </input>
</nds>

Most of the information in the initialization document corresponds to information configured using
ConsoleOne in the DirXML-Driver object properties dialog.

The src-dn attribute in the <init-params> element is the distinguished name of the DirXML-Driver
object that is used to contain configuration information for the skeleton driver.

The content of the <authentication-info> element corresponds to the driver authentication
parameters found in the properties dialog. The content of the <password> element is suppressed
because the trace facility suppresses sensitive data (as defined by DirXML). The actual password
value is available to the driver.

The content of the <driver-options> element corresponds to driver-specific options specified in the
properties dialog. Driver-specific options are specified using an XML file that describes the options.
The following example is an XML file used for the skeleton driver:

<?xml version="1.0" encoding="UTF-8"?>
 <driver-config name="Skeleton Driver">
 <driver-options>
 <option-1 display-name="Sample String option">This is a
string</option-1>
 <option-2 display-name="Sample int option (enter an
integer)">10</option-2>
 </driver-options>
 <subscriber-options>
 <sub-1 display-name="Sample Subscriber option">String for
Subscriber</sub-1>
 </subscriber-options>
 <publisher-options>
 <pub-1 display-name="Sample Publisher option">String for
Publisher</pub-1>
 <polling-interval display-name="Polling interval in
seconds">4</polling-interval>
 </publisher-options>
 </driver-config>

Using such an XML file to describe driver-specific configuration parameters allows the
administrator to easily configure your driver using existing eDirectory management tools such as
ConsoleOne.

The driver must return a status document as the response to the init method. The following are
examples of potential status documents.
Writing a DirXML Driver 45

46 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Example 1

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <status level="success"/>
 </output>
 </nds>

Example 2

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <status level="warning">No authentication information</status>
 </output>
 </nds>

Sample Code

Java Sample Code

The following code from the Java skeleton driver sets up a trace message, gets the authentication
and configuration parameters from the initParameters document, creates the subscriber and
publisher objects, and returns a status document.

public XmlDocument init(XmlDocument initParameters)
{
 try
 {
 tracer.trace("init");
 //create an output document for returning
 //status to DirXML
 Element output = createOutputDocument();

 //setup the shared authentication information
 authParams = getAuthenticationParams(
initParameters.getDocument());
 //If we don’t have any authentication parameters,
 //report a warning. This is intended to serve as an
 //example of how to report a warning or an error.
 //A real driver may or may not need information
 //in the authentication parameters.
 if (authParams.authenticationId == null &&
 authParams.authenticationContext == null &&
 authParams.applicationPassword == null)
 {
 //a real driver would probably want to report
 //a fatal error if required parameters
 //are not supplied
 addStatusElement(output,STATUS_WARNING,"No authentication
information",null);
 }

 //get any non-authentication options from
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 //the init document
 params = getShimParams(initParameters.getDocument(),
"driver",DRIVER_PARAMS);

 //create the objects that do the real work
 subscriptionShim = new SkeletonSubscriptionShim (authParams);
 publicationShim = new SkeletonPublicationShim (authParams);

 //if we didn’t already add a status element,
 //add a success
 if (output.getElementsByTagName("status").item(0) == null)
 {
 addStatusElement(output,STATUS_SUCCESS,null,null);
 }

 //return the status document
 return new XmlDocument(output.getOwnerDocument());
 } catch (Throwable t)
 {
 //something bad happened...
 return createStatusDocument(STATUS_FATAL, t.getMessage());
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in
the SolutionDriverShim.java file and the DriverShimImpl.java file.

C++ Sample Code

The following code from the skeleton driver sets up a trace message, gets the authentication and
configuration parameters from the initParmeters document, creates the subscriber and publisher
objects, and returns a status document.

XmlDocument * METHOD_CALL CSkeletonDriver::init(
 XmlDocument * initParameters)

{
 try
 {
 common.tracer->trace("init");
 //NOTE: only trace this here to test the trace facility.
 //The document is already traced by the engine
 //so it will appear twice in the trace screen
 common.tracer->trace(initParameters);

 //create an output document for returning status to DirXML
 Element * output = NdsDtd_newOutputDocument();

 //setup the shared authentication information
 authParams = common.getAuthenticationParams(initParameters-
>getDocument());
 //If we don't have any authentication parameters, report a
warning.
 //This is intended to serve as an example of how to report a
Writing a DirXML Driver 47

../../../samplecode/dirxml_sample/index.htm

48 NDK: Novel

novdocx (E
N

U
) 01 February 2006
warning
 //or an error. A real driver may or may not need information
 //in the authentication parameters.
 if (authParams->authenticationId == 0 &&
 authParams->authenticationContext == 0 &&
 authParams->applicationPassword == 0)
 {
 //A real driver would probably want to report a fatal error if
required
 //parameters are not supplied

NdsDtd_addStatus(output,STATUS_LEVEL_WARNING,MSG_NO_AUTH_INFO,0);
 }

 //get any non-authentication options from the init document
 params = common.getShimParams(initParameters-
>getDocument(),TEXT_DRIVER,DRIVER_PARAMS);

 //create the objects that do the real work
 subscriptionShim = new SkeletonSubscriber(authParams);
 publicationShim = new SkeletonPublisher(authParams);

 //if we didn't already add a status element, add a success
 if (output->getElementsByTagName(common.ndsDtd->TAG_STATUS)-
>item(0) == 0)
 {
 NdsDtd_addStatus(output,STATUS_LEVEL_SUCCESS,0,0);
 }

 //return the status document
 return common.setReturnDocument(output->getOwnerDocument());
 } catch (ShimException e)
 {
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,e.getMessage()));
 } catch (...)
 {
 //something bad happened...
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,MSG_BAD));
 }
}

In the sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in the
DriverShimImpl file and the parseInitParams method in the CommonImpl.cpp file.
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
DriverShim getSubscriptionShim
Returns a reference to the subscriber object.

Syntax

Java

public SubscriptionShim getSubscriptionShim ()

C++

#include "NativeInterface.h"

SubscriptionShim * METHOD_CALL getSubscriptionShim (
 void);

Remarks
The DirXML engine calls the getSubscriptionShim method to obtain the driver's implelemtation of
the SubscriptionShim interface. Typically, the object implementing SubscriptionShim is constructed
in either the Driver object constructor or the DriverShim init method.

Sample Code

Java Sample Code

The following sample code from the Java skeleton driver returns a reference to the subscriber.

public SubscriptionShim getSubscriptionShim()
{
 tracer.trace("getSubscriptionShim");
 return subscriptionShim;
}

C++ Sample Code

The following sample code from the C++ skeleton driver sends a trace message and returns a handle
to the subscriber.

SubscriptionShim * METHOD_CALL
CSkeletonDriver::getSubscriptionShim(void)
{
 common.tracer->trace("getSubscriptionShim");
 return subscriptionShim;
}

Writing a DirXML Driver 49

50 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Driver getPublicationShim
Returns a reference to the publisher object.

Syntax

Java

public PublicationShim getPublicationShim ()

C++

#include "NativeInterface.h"

PublicationShim * METHOD_CALL getPublicationShim (
 void);

Remarks
The DirXML engine calls the getPublicationShim method to obtain the driver's implementation of
the PublicationShim interface. Typically, the object implementing PublicationShim is constructed in
either the driver object constructor or the DriverShim init method.

Sample Code

Java Sample Code

The following sample code from the skeleton driver returns a reference to the publisher.

public PublicationShim getPublicationShim()
{
 tracer.trace("getPublicationShim");
 return publicationShim;
}

C++ Sample Code

The following sample code from the skeleton driver sends a trace message and returns a handle to
the publisher.

PublicationShim * METHOD_CALL
CSkeletonDriver::getPublicationShim(void)

{
 common.tracer->trace("getPublicationShim");
 return publicationShim;
}

l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DriverShim shutdown
Shuts down the DirXML driver.

Syntax

Java

XmlDocument shutdown (XmlDocument
 reason);

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL shutdown(
 XmlDocument *reason);

Parameters
reason

(IN) Points to an XML document that contains the reason for the shutdown. Currently NULL is
sent because the DirXML engine does not supply a reason.

Return Values
Returns an XML document containing the results of the shutdown operation.

Remarks
The DirXML engine calls this method on the subscriber thread to inform the driver that it is to cease
all processing and shutdown in an orderly fashion. The shutdown method is responsible for
informing the publisher (running on a different thread) that it must return from the PublicationShim
start method. After the shutdown method returns, the DirXML engine waits for up to 30 seconds for
the publisher thread to return from the start method.

The "reason" argument is intended so that the DirXML engine can pass an XML document detailing
the reason for the shutdown (such as user action or server going down) but currently a null argument
is passed. The return document is a status document detailing the success or failure of the operation.
The following is an example return document from the skeleton DriverShim shutdown method:

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <init-params>
 <subscriber-state>
 <current-association>6</current-association>
 </subscriber-state>
 </init-params>
 <status level="success"/>
 </output>
</nds>
Writing a DirXML Driver 51

52 NDK: Novel

novdocx (E
N

U
) 01 February 2006
This document contains a <subscriber-state> element. The skeleton Subscriber saves some state
information between invocations and uses the return document from the shutdown method to cause
the DirXML engine to write the state information. The engine returns the state information to the
driver in the SubscriptionShim init method.

Sample Code

Java Sample Code

The following sample code from the skeleton driver calls a stop method on the publisher. It then
returns an XmlDocument document that contains the status of the shutdown.

public XmlDocument shutdown(XmlDocument reason)
{
 tracer.trace("shutdown");
 //create an output document so the subscriber can
 //write its state info
 Element output = createOutputDocument();
 subscriptionShim.setState(output);

 // shutdown whatever needs shutting down
 publicationShim.stop();

 //add a successful status
 addStatusElement(output,STATUS_SUCCESS,null,null);

 //return the status and state to DirXML
 return new XmlDocument(output.getOwnerDocument());
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the shutdown
method in the SolutionDriverShim.java file and the DriverShimImpl.java file.

C++ Sample Code

The following sample code from the skeleton driver sends a trace message, calls a stop method on
the publisher. It then returns to the DirXML engine an XmlDocument that contains the status of the
shutdown.

XmlDocument * METHOD_CALL CSkeletonDriver::shutdown(XmlDocument *
reason)
{
 try
 {
 common.tracer->trace("shutdown");
 common.tracer->trace(reason);
 //create an output document so the subscriber can write its
state info
 Element * output = NdsDtd_newOutputDocument();
 subscriptionShim->setState(output);

 // shutdown whatever needs shutting down
 publicationShim->stop();
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
 //add a successful status
 NdsDtd_addStatus(output,STATUS_LEVEL_SUCCESS,0,0);

 //return the status and state to DirXML
 return common.setReturnDocument(output->getOwnerDocument());
 } catch (...)
 {
 //something bad happened...
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the shutdown
method in the DriverShimImpl.cpp file.
Writing a DirXML Driver 53

../../../samplecode/dirxml_sample/index.htm

54 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DriverShim getSchema
Returns an XML document that defines the schema of the application.

Syntax

Java

public XmlDocument getSchema (
 XmlDocument initParameters)

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL getSchema (
 XmlDocument *initParameters);

Parameters
initParameters

(IN) Points to an XML document that contains the configuration parameters for the driver so
that the driver can authenticate to the application to obtain the schema.

Remarks
The DirXML engine calls the getSchema method to obtain an XML document containing a
representation of the application’s schema. The getSchema method is called on a driver instance
constructed explicitly for the query schema operation. After the getSchema method returns, the
instance used for the getSchema called is destroyed (C++) or made available for garbage collection
(Java).

When a driver is run for the first time, the DirXML engine calls the getSchema method before
starting the driver for normal synchronization. This is done because the engine requires a schema
representation to properly perform merges between eDirectory and application objects that are
associated through a matching rule. In addition, ConsoleOne requires the application schema for the
Mapping Rule snapin to function correctly. When the schema has been obtained, it is stored in the
DirXML-ApplicationSchema attribute on the DirXML-Driver object corresponding to the driver.

The "initParameters" argument contains a document that contains the same initialization parameters
as are sent to the DriverShim init method, as well as the <subscriber-options> and <publisher-
options> elements that are sent to SubscriptionShim init and PublicationShim init methods. The
return document should contain either a status, in the case of an error, or the schema representation.

If the application has a modifiable schema the driver should query the application and build the
XML schema representation from the results of the query. If the application has an invariant schema,
a reasonable implementation is to place a serialized XML document representing the schema into a
string in the driver and return that XML document.The following is an example of the response to a
getSchema call from the VRTest driver.

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <schema-def hierarchical="true">
 <class-def class-name="O" container="true">
 <attr-def attr-name="Name" case-sensitive="false" multi-
valued="false" naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 </class-def>
 <class-def class-name="OU" container="true">
 <attr-def attr-name="Name" case-sensitive="false" multi-
valued="false" naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
 type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 </class-def>
 <class-def class-name="User Object" container="false">
 <attr-def attr-name="name" case-sensitive="false" multi-
valued="false" naming="true" read-only="false" required="true"
type="string"/>
 <attr-def attr-name="Family Name" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="First Name" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Telephone" case-sensitive="false"
multi-valued="true" naming="false" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 </class-def>
 <class-def class-name="Bogus" container="false">
 <attr-def attr-name="Whatever" case-sensitive="false"
multi-valued="true" naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
multi-valued="false" naming="false" read-only="false" required="true"
type="string"/>
 </class-def>
Writing a DirXML Driver 55

56 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 </schema-def>
 </output>
</nds>

For information on the format of this schema document, see <schema-def> (page 162).

The following code examples show how the skeleton driver implements the getSchema
method.However, since the skeleton driver doesn’t support an actual application, an error is returned
rather than a schema representation.

Sample Code

Java Sampe Code

The sample code in the Java skeleton driver returns a document stating the driver doesn't support
this feature.

public XmlDocument getSchema(XmlDocument initParameters)
{
 //setup the shared authentication information
 authParams = getAuthenticationParams(initParameters.
getDocument());

 //However, since we are just a skeleton, this code
 //creates a return document that says we can’t do it.
 return createStatusDocument(STATUS_ERROR,"Skeleton driver
doesn’t support the getSchema operation");
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the getSchema
method in the SolutionDriverShim.java file and the DriverShimImpl.java file.

C++ Sampe Code

The following sample code from the skeleton driver sends a trace message, obtains the
authentication information, returns a document that the driver is unable to read the schema.

XmlDocument * METHOD_CALL CSkeletonDriver::getSchema(
 XmlDocument * initParameters)
{
 try
 {
 common.tracer->trace("getSchema");

 //setup the shared authentication information
 authParams = common.getAuthenticationParams(initParameters-
>getDocument());

//However, since this driver is just a skeleton...
//
//Create a return document that says we can't do it. Note that this
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
//causes DirXML to display a warning in DSTrace that it is unable to
//read the application schema
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_ERRO
R,MSG_NO_SCHEMA));
 } catch (ShimException e)
 {
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,e.getMessage()));
 } catch (...)
 {
 //something bad happened...
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the getSchema
method in the DriverShimImpl.cpp file.
Writing a DirXML Driver 57

../../../samplecode/dirxml_sample/index.htm

58 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DriverShim destroy (C++ only)
Frees any resources allocated by the driver, including the driver object.

Syntax

C++

#include "NativeInterface.h"

void METHOD_CALL destroy (
 void);

Remarks
The DirXML engine calls this method for a C++ driver when the driver object is no longer required
by the engine. The destroy method is called after the DriverShim shutdown method is called or after
the getSchema method is called, depending on the mode. The destroy method will also be called
after the DriverShim init method is called if the init method returns a fatal error in its return
document.

The destroy method is responsible for freeing all resources used by the driver instance, including the
driver instance itself. After the destroy method returns, no further calls or references to the driver
instance are made.

C++ Sample Code
The following code from the C++ skeleton driver implements this method.

void METHOD_CALL CSkeletonDriver::destroy(void)

{
 common.tracer->trace("destroy");
 delete this;
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the destroy method
in the DriverShimImpl.cpp file.

2.6 Implementing the SubscriptionShim
Interface
The SubscriptionShim interface consists of two methods:

• SubscriptionShim init—performs subscriber channel-specific initialization.
• SubscriptionShim execute—accepts commands from the DirXML engine and executes those

commands on the application. The execute method is inherited from the
XmlCommandProcessor interface.
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
When the DirXML engine initializes a DirXML driver, the engine adds the driver to its notification
list for eDirectory events. When an eDirectory event occurs, the engine converts the eDirectory data
to XML and sends it to the subscriber.

The subscriber needs to be configured for an eDirectory filter. The DirXML engine uses the filter to
register the DirXML driver for the appropriate eDirectory events and then filters the data to the
appropriate objects and attributes.

The DirXML driver also needs to be configured for mapping, creation, matching, placement, and
optionally, event transformation rules. The DirXML engine converts eDirectory data to XML and
applies these rules before sending the data to the subscriber. These rules allow the system
administrator to determine what data and how the data is shared between the two. For more
information, see “Introduction to the Rules and Filters” on page 103.

The subscriber requires four main routines, three of which are driver-specific:

• Driver-specific: the initialization process.
• Driver-specific: the process for converting the XML formatted data into the external database's

native format.
• Driver-specific: the process that sends the data to the external database. You must use the

application's programming interface for this process.
• Generic to all drivers: the query callback process that requests more information from

eDirectory before performing an update to the external application.

The SubscriptionShim interface inherits from the XmlCommandProcessor interface.

For Javadoc, see SubscriptionShim (../api/com/novell/nds/dirxml/driver/SubscriptionShim.html).
Writing a DirXML Driver 59

../api/com/novell/nds/dirxml/driver/SubscriptionShim.html

60 NDK: Novel

novdocx (E
N

U
) 01 February 2006
SubscriptionShim init
Initializes the subcriber of the DirXML driver.

Syntax

Java

public XmlDocument init (
 XmlDocument initParameters)

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL init (
 XmlDocument *initParameters);

Parameters
initParameters

(IN) Points to an XML document that contains the initialization data for

Return Values
Returns an XML document containing a status report on the initialization process. The status can be
"success", "warning", "error" or "fatal". If "fatal" is returned, the driver start is aborted.

Remarks
The DirXML engine calls the init method to allow the Subscriber object to perform any channel-
specific initialization necessary before beginning the execution of commands.

The initParameters argument contains an XML document with initialization data such as
authentication information, driver-specific subscriber parameters, and the subscriber channel filter.

When the DirXML engine calls the SubscriptionShim init method, it sends an XML document
similar to the following.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <init-params src-dn="\PERIN-TAO\novell\Driver Set\Java Skeleton
Driver\Subscriber">
 <authentication-info>
 <server>server.app:400</server>
 <user>User1</user>
 <password><!-- content suppressed --></password>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 </authentication-info>
 <driver-filter>
 <allow-class class-name="User">
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="Telephone Number"/>
 </allow-class>
 </driver-filter>
 <subscriber-options>
 <sub-1 display-name="Sample Subscriber option">String for
Subscriber</sub-1>
 </subscriber-options>
 <subscriber-state>
 <current-association>6</current-association>
 </subscriber-state>
 </init-params>
 </input>
</nds>

Most of the information in the initialization document corresponds to information configured using
ConsoleOne in the DirXML-Driver object properties dialog.

The src-dn attribute on the <init-params> element is the distinguished name of the DirXML-
Subscriber object that corresponds to the driver’s Subscriber object. The DirXML-Subscriber object
is the eDirectory object that contains the Subscriber channel filter and references to the Subscriber
channel rules.

The content of the <authentication-info> element corresponds to the driver authentication
parameters found in the DirXML-Driver properties dialog. The content of the <password> element
is suppressed because the trace facility suppresses sensitive data (as defined by DirXML). The
actual password value is available to the driver.

The content of the <subscriber-options> element corresponds to driver-specific options specified in
the DirXML-Driver properties dialog. Driver-specific options are specified using an XML file that
describes the options. See “DriverShim init” on page 44 for an example XML file used with the
skeleton driver. For information about the possible elements in this document, see <subscriber-
options> (page 197).

The <subscriber-state> element contains state information that the skeleton driver writes at driver
shutdown. (For more information , see “DriverShim shutdown” on page 51.

The <driver-filter> element contains the subscriber filter. This filter is a list of the classes and
attributes for which the subscriber receives events. For information about the possible elements in
the filter, see <driver-filter> (page 180).

Sample Code

Java Sample Code

The following code from the skeleton driver retrieves the subscriber parameters, checks the
document for state information and configuration parameters, and then returns a status document.

public XmlDocument init(XmlDocument initParameters)
{

Writing a DirXML Driver 61

62 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 try
 {
 tracer.trace("init");
 //get any non-authentication options from
 //the init document
 params = getShimParams(initParameters.getDocument(),
"subscriber",SUBSCRIBER_PARAMS);

 //Get any state that may have been passed in.

 //The skeleton driver fakes associations to DirXML so
 //that it appears more like a real driver
 //see addHandler()
 int assocState = params.getIntParam("current-association");
 if (assocState != -1)
 {
 //setup our fake association for handling adds
 currentAssociation = assocState;
 }
 //perform any other initialization that might be
 //required.

 return createSuccessDocument();
 } catch (Throwable t)
 {
 //something bad happened...
 return createStatusDocument(STATUS_FATAL, t.getMessage());
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in
the SolutionSubscriptionShim.java file and the SubscriptionShimImpl.java file.

C++ Sample Code

The following code from the skeleton driver sends a DSTrace message, retrieves the subscriber
parameters, and returns a status document.

XmlDocument * METHOD_CALL SkeletonSubscriber::init(
XmlDocument * initParameters)

{
 try
 {
 common.tracer->trace("init");

 //get any non-authentication options from the init document
 params = common.getShimParams(initParameters-
>getDocument(),TEXT_SUBSCRIBER,SUBSCRIBER_PARAMS);

 //Get any state that may have been passed in.

 //The skeleton driver fakes associations to DirXML so that it
appears
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
 //more like a real driver. See addHandler()
 int assocState = params->getIntParam(TEXT_CURRENT_ASSOCIATION);
 if (assocState != -1)
 {

 //setup our fake association for handling adds
 currentAssociation = assocState;
 }
 //perform any other initialization that might be required.

 return common.setReturnDocument(common.createSuccessDocument());
 } catch (ShimException e)
 {
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,e.getMessage()));
 } catch (...)
 {
 //something bad happened...
 return
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in
the SubcriptionShimImpl.cpp file.
Writing a DirXML Driver 63

../../../samplecode/dirxml_sample/index.htm

64 NDK: Novel

novdocx (E
N

U
) 01 February 2006
SubscriptionShim execute
Sends eDirectory information to the DirXML driver for the external application.

Syntax

Java

public XmlDocument execute (
 XmlDocument doc,
 XmlQueryProcessor query)

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL execute (
 XmlDocument *document,
 XmlQueryProcessor *query);

Parameters
document

(IN) Points to an XML document.

query
(IN) Points to a callback method that the DirXML driver can call if a command in the
document does not contain enough information.

Remarks
The DirXML engine uses the execute method to send commands to the driver, and the driver
executes them in the application. For example, the DirXML engine could send an XML document
that instructs the driver to create a new user in the application. Other examples include commands to
modify an attribute on an application object or to delete an application object. In addition, the
DirXML engine can send a query element as part of a document passed to the execute method. The
query instructs the driver to query the application for the data contained in the query.

The doc argument is the command document which is an XML document containing one or more
commands that must be executed by the driver. This may be any mix of acceptable commands,
depending on the rules, and may include any of the following: <add>, <modify>, <delete>,
<rename>, <move>, and <query>.

IMPORTANT: Although the DirXML engine usually sends just one command per document, the
subscriber must be prepared to handle any number of commands in a single document.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The query argument is an interface that allows the subscriber to query eDirectory for any additional
information it may require to complete a command. The XmlQueryProcessor interface has a method
named query which accepts an XDS document containing one or more queries.

The return from the execute method is an XML document containing the status of the command
processing. For the format of all possible input and output documents, see Chapter 7, “eDirectory
DTD Commands and Events,” on page 117.

One or more of the commands in the command document might fail. In order to allow the driver to
return multiple <status> elements, each corresponding to a single command, both the command
elements and the <status> elements have an attribute named event-id. The event-id value is unique
in the document and is used to tell DirXML which command element the <status> element refers to.
If a <status> element has no event-id attribute, the <status> element is assumed to apply to all
commands that were in the command document.

The class names and attribute names contained in the command document will be the application’s
names, if a mapping rule is in place for the driver. The examples from the skeleton driver in this
section are from a skeleton driver installation with no mapping rule, so the names in the example
documents are the eDirectory names.

Add Command

The following sample command document instructs the skeleton driver to add a user.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <add class-name="User" event-id="0" src-dn="\PERIN-
TAO\novell\John" src-entry-id="35868">
 <add-attr attr-name="Surname">
 <value timestamp="965252204#5" type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="Telephone Number">
 <value timestamp="965252229#6" type="teleNumber">(801) 555-
5555</value>
 </add-attr>
 <add-attr attr-name="Given Name">
 <value timestamp="965252229#1" type="string">Jonathan</
value>
 </add-attr>
 </add>
 </input>
</nds>

The above document tells the skeleton driver to add a user with three attributes. The response to an
add command is a status or output document containing either an error status or an <add-
association> informing DirXML the object was successfully added to the application and informing
DirXML of the application value used for associating the eDirectory and application objects.

The skeleton driver does not actually support an application, so it cannot add a user, but the skeleton
subscriber does have code that returns a fake association value telling DirXML that it did add the
Writing a DirXML Driver 65

66 NDK: Novel

novdocx (E
N

U
) 01 February 2006
user. This is so that the skeleton driver can also illustrate how to receive modify and delete
commands. The following example is a return document for the add example.

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <add-association dest-dn="\PERIN-TAO\novell\John" event-
id="0">7</add-association>
 </output>
</nds>

The above document causes the DirXML engine to write a string ("7") that associates the eDirectory
object with the application object. All further commands relating to the application object will
contain this association value so that the driver can reference the object in the application.

For more information about the possible elements in an add operation, see <add> (page 127).)

Modify Command

The following command modifies the eDirectory object represented by the <add> command above.
It contains a command to change the Given Name attribute.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <modify class-name="User" event-id="0" src-dn="\PERIN-
TAO\novell\John" src-entry-id="35868" timestamp="965252836#6">
 <association state="associated">7</association>
 <modify-attr attr-name="Given Name">
 <remove-value>
 <value timestamp="965252836#6" type="string">Jonathan
 </value>
 </remove-value>
 <add-value>
 <value timestamp="965252836#6" type="string">Johnny
 </value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

The above document instructs the skeleton driver to modify the user with the unique application key
of "7" such that the Given Name attribute value changes from "Jonathan" to "Johnny". The skeleton
driver pretends the operation succeeds and returns the following status document:

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <status event-id="0" level="success"/>
 </output>
</nds>

For more information about the possible elements in a modify operation, see <modify> (page 141).
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Query Command

The command document passed to the execute method may also contain a query. A query is
typically issued to the driver due to a matching rule. The DirXML engine sends a query when the
following conditions occur:

• An event occurs for an eDirectory object that matches the subscriber filter for the driver
• The eDirectory object has not yet been associated with an object in the application
• A matching rule is present on the subscriber channel

The DirXML engine uses the query to locate a match in the application according to the criteria
present in the matching rule.

The following command document, containing a query, was sent to the skeleton driver previous to
the <add> command above. The query was generated because a matching rule was in place on the
subscriber channel that instructed DirXML to attempt to find an object in the application with the
same value for the "Surname" and "Telephone Number" attributes.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <query class-name="User" event-id="0">
 <search-class class-name="User"/>
 <search-attr attr-name="Surname">
 <value timestamp="965252204#5" type="string">Doe</value>
 </search-attr>
 <search-attr attr-name="Telephone Number">
 <value timestamp="965252229#6" type="teleNumber">
 (801) 555-5555</value>
 </search-attr>
 <read-attr/>
 </query>
 </input>
</nds>

Because the skeleton driver has no application, it is unable to find a match, and returns the following
document.

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <status event-id="0" level="success"/>
 </output>
</nds>

The absence of an <instance> element in the return document indicates no matching objects were
found. The <status> element in the return document is success because the query command was
successfully executed.

The following examples illustrate a query that returns a matched object. These examples were
generated by the VRTest driver.

The DirXML engine sends the following query:
Writing a DirXML Driver 67

68 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <query class-name="User Object" event-id="0">
 <search-class class-name="User Object"/>
 <search-attr attr-name="name">
 <value type="string">Jane</value>
 </search-attr>
 <read-attr/>
 </query>
 </input>
</nds>

The VRTest driver returns the following response:

<nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <instance class-name="User Object" src-dn="\novell\Jane">
 <association>25</association>
 </instance>
 </output>
</nds>

The above query instructed the VRTest driver to query the VRTest application for an object of class
"User Object" with an attribute named "name" with the value "Jane". The empty <read-attr/>
element instructs the driver that DirXML does not require any attributes to be read.

The response from the driver indicates that a single match was found, and that the unique
application key for the object is "25". If more than one matching object had been found, multiple
<instance> elements would appear in the result document.

For more information about the possible elements in a query operation, see <query> (page 151).

Sample Code

Java Sample Code

The following code from the skeleton driver code sends a message to DSTrace, searches the
document for elements, dispatches them to command handlers, and returns a result document. It also
shows how to handle the most common error conditions.

public XmlDocument execute(XmlDocument doc, XmlQueryProcessor query)
 {
 int retryCount = 2;
 tracer.trace("execute");
 try
 {
 //setup the return document for use by command handlers
 outputElement = createOutputDocument();

 //try and connect with our mythical app
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 while (retryCount-- > 0)
 {
 try
 {
 connect();
 Document document = doc.getDocument();

 //find the <input> element
 Element input =
(Element)document.getElementsByTagName("input") .item(0);

 //iterate through the children, dispatching commands
 Node childNode = input.getFirstChild();
 while (childNode != null)
 {

 //only elements are interesting...ignore any nterspersed
 //text, comments, etc.
 if (childNode.getNodeType() == Node.ELEMENT_NODE)
 {
 dispatch((Element)childNode);
 }
 childNode = childNode.getNextSibling();
 }

 //return the result of whatever we were told to do
 return new XmlDocument(outputElement.getOwnerDocument());
 } catch (java.io.IOException e)
 {
 if (retryCount <= 0)
 {
 //done trying
 throw e;
 }
 }
 }
 //if we fall through here, we failed to connect
 throw new java.io.IOException("failed to connect");
 } catch (java.io.IOException e)
 {
 //somehow failed in talking to app, tell DirXML to retry later
 return createStatusDocument(STATUS_RETRY,e.toString());
 } catch (Throwable t)
 {
 //something bad happened...
 return createStatusDocument(STATUS_ERROR,t.getMessage());
 }
 }

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the execute method
in the SolutionSubscriptionShim.java file and the SubscriptionShimImpl.java file. For sample code
that processes the commands, see the dispatch method in the
SolutionSubscriptionShim.java file and the handler methods (addHandler,
Writing a DirXML Driver 69

../../../samplecode/dirxml_sample/index.htm

70 NDK: Novel

novdocx (E
N

U
) 01 February 2006
modifyHandler, deleteHandler, renameHandler, moveHandler, and queryHandler) in the
SkeletonSubscriptionShim.java file.

C++ Sample Code

The following code from the skeleton driver sends a message to DSTrace, searches the document for
elements, dispatches them to command handlers, and returns a result document. It also shows how
to handle the most common error conditions.

XmlDocument * METHOD_CALL SkeletonSubscriber::execute(
 XmlDocument * doc, XmlQueryProcessor * queryInterface)

{
 int retryCount = 2;
 common.tracer->trace("execute");
 try
 {
 //setup the return document for use by command handlers
 outputElement = NdsDtd_newOutputDocument();

 //try and connect with our mythical app
 while (retryCount-- > 0)
 {
 try
 {
 //connect may throw a ConnectException
 connect();
 Document * document = doc->getDocument();

 //find the <input> element
 Element * input = (Element *)document->getElementsByTagName
 (common.ndsDtd->TAG_INPUT)->item(0);

 //iterate through the children, dispatching commands
 Node * childNode = input->getFirstChild();
 while (childNode != 0)
 {
 //only elements are interesting...ignore any interspersed
 //text, comments, etc.
 if (childNode->getNodeType() == Node::ELEMENT_NODE)
 {
 dispatch((Element *)childNode);
 }
 childNode = childNode->getNextSibling();
 }
 //return the result of whatever we were told to do
 return common.setReturnDocument(outputElement
 ->getOwnerDocument());
 } catch (ConnectException e)
 {
 if (retryCount <= 0)
 {
 //done trying
 throw e;
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 }
 }
 }
 //if we fall through here, we failed to connect,
 //so get the enclosing handler
 throw ConnectException(MSG_CONNECT_FAILURE);
 } catch (ConnectException e)
 {
 //somehow failed in talking to app, tell DirXML to retry later...
 //"retry" status means the eDirectory event will not be discarded
 //and that DirXML will resubmit it later (default is 30 seconds
 // later). This status should be used for errors related to
 //connection problems since the event won't be lost. For errors
 // such as application errors due to data, etc., use error since
 //it will cause DirXML to discard the event.
 return common.setReturnDocument(common.createStatusDocument
(STATUS_LEVEL_RETRY,e.getMessage()));
 } catch (ShimException e)
 {
 return common.setReturnDocument(common.createStatusDocument
(STATUS_LEVEL_ERROR,e.getMessage()));
 } catch (...)
 {
 //something bad happened...
 return common.setReturnDocument(common.createStatusDocument(
STATUS_LEVEL_FATAL,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the execute method
in the SubscriptionShimImpl.cpp file. For sample code that processes the commands, see
the dispatch method in the SubscriptionShimImpl.cpp file and the handler methods
(addHandler, modifyHandler, deleteHandler, renameHandler, moveHandler, and queryHandler) in
the SkeletonSubscriber.cpp file.

2.7 Implementing the PublicationShim Interface
The PublicationShim interface consists of two methods:

• PublicationShim init—performs publisher channel-specific initialization
• PublicationShim start—monitors the application and publishes application changes to the

DirXML engine

Each of these methods is described in detail in the following sections.

In addition, the publisher must provide a query callback function for the DirXML engine. The
publisher usually implements the XmlQueryProcessor interface.

For Javadoc, see PublicationShim (../api/com/novell/nds/dirxml/driver/PublicationShim.html).
Writing a DirXML Driver 71

../../../samplecode/dirxml_sample/index.htm
../api/com/novell/nds/dirxml/driver/PublicationShim.html

72 NDK: Novel

novdocx (E
N

U
) 01 February 2006
PublicationShim init
Initializes the publisher of the DirXML driver.

Syntax

Java

public XmlDocument init (
 XmlDocument initParameters)

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL init (
 XmlDocument *initParameters);

Parameters
initParameters

(IN) Points to an XML document that contains the configuration information for the publisher.

Return Values
Returns an XML document containing a status report on the initialization operation. The status can
be "success", "warning", "error", or "fatal". If "fatal" is returned, the driver start is aborted.

Remarks
The DirXML engine calls the init method to allow the publisher object to perform any channel-
specific initialization necessary before monitoring the application and publishing changes to
DirXML.

The initParameters argument contains an XML document with initialization data such as
authentication information, driver-specific publisher parameters, and the publisher channel filter.

When the DirXML engine calls the PublicationShim init method, it sends an XML document similar
to the following.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <init-params src-dn="\PERIN-TAO\novell\Driver Set\Java Skeleton
 Driver\Publisher">
 <authentication-info>
 <server>server.app:400</server>
 <user>User1</user>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <password><!-- content suppressed --></password>
 </authentication-info>
 <driver-filter>
 <allow-class class-name="User">
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Surname"/>
 </allow-class>
 </driver-filter>
 <publisher-options>
 <pub-1 display-name="Sample Publisher option">String for
 Publisherr</pub-1>
 <polling-interval display-name="Polling interval in
 seconds">4</polling-interval>
 </publisher-options>
 </init-params>
 </input>
</nds>

Most of the information in the initialization document corresponds to information configured using
ConsoleOne in the DirXML-Driver object properties dialog.

The src-dn attribute on the <init-params> element is the distinguished name of the DirXML-
Publisher object that corresponds to the driver’s publisher object. The DirXML-Publisher object is
the eDirectory object that contains the publisher channel filter and references to the publisher
channel rules.

The content of the <authentication-info> element corresponds to the driver authentication
parameters found in the DirXML-Driver properties dialog. The content of the <password> element
is suppressed because the trace facility suppresses sensitive data (as defined by DirXML). The
actual password value is available to the driver.

The content of the <publisher-options> element corresponds to driver-specific options specified in
the DirXML-Driver properties dialog. Driver-specific options are specified using an XML file that
describes the options. See “DriverShim init” on page 44 for an example XML file used with the
skeleton driver. For information about the possible elements in this document, see <publisher-
options> (page 189).

The <driver-filter> element contains the publisher filter. This filter is a list of the classes and
attributes for which the publisher sends events to the DirXML engine. For information about the
possible elements in the filter, see <driver-filter> (page 180).

Sample Code

Java Sample Code

The following code from the skeleton driver retrieves the document, gets the publisher configuration
parameters, sets the polling interval, and constructs a filter.

public XmlDocument init(XmlDocument initParameters)
{
 tracer.trace("init");

 //get the driver filter for the publication shim to use
 //for filtering application events
Writing a DirXML Driver 73

74 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 Document initDoc = initParameters.getDocument();

 //get any non-authentication options from the init document
 ShimParams params =
getShimParams(initDoc,"publisher",PUBLISHER_PARAMS);

 //get any the polling interval that may have been passed in
 int pi = params.getIntParam("polling-interval");
 if (pi != -1)
 {
 //change our default polling interval to whatever was setup
 //using ConsoleOne
 pollingInterval = pi;
 }

 //setup a filter for use in start()
 //NOTE: the skeleton publisher doesn’t actually make use of the
 // filter, but this code is here to illustrate how to create the
 // filter based on the init parameters
 NodeList filterList = initDoc.getElementsByTagName("driver-
 filter");
 int i = 0;
 Element filterElement;
 while ((filterElement = (Element)filterList.item(i++)) != null)
 {
 String type = filterElement.getAttribute("type");
 if (type.length() == 0 || type.equals("publisher"))
 {
 filter = new DriverFilter(filterElement);
 break;
 }
 }
 if (filter == null)
 {
 //if weren’t able to setup a filter, setup a null
 //filter so we don’t have to check for filter != 0 everywhere
 filter = new DriverFilter();
 }
 return createSuccessDocument();
 }

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in
the SolutionPublicationShim.java file and the PublicationShimImpl.java file.

C++ Sample Code

The following code from the C++ skeleton driver retrieves the document, gets the publisher
configuration parameters, sets a polling interval, and constructs a filter.

XmlDocument * METHOD_CALL SkeletonPublisher::init(
 XmlDocument * initParameters)

{
 try
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
 {
 common.tracer->trace("init");

 //construct a driver filter for the publication shim to use for
filtering
 //application events In an actual driver, the publisher would use
 //the filter to filter events from the application
 //to avoid publishing unnecessary events to DirXML.
 Document * initDoc = initParameters->getDocument();

 //get any non-authentication options from the init document
 CommonImpl::ShimParams * params = common.getShimParams(initDoc,
TEXT_PUBLISHER,PUBLISHER_PARAMS);

 //get any the polling interval that may have been passed in
 int pi = params->getIntParam(TEXT_POLLING_INTERVAL);
 if (pi != -1)
 {
 //change our default polling interval to whatever was
 //set up using ConsoleOne
 pollingInterval = pi;
 }
 //setup a filter for use in start()
 //NOTE: the skeleton publisher doesn't actually make use of the
 // filter, but this code is here to illustrate how to create the
 // filter based on the init parameters
 Element * filterElement = (Element *)initDoc-
>getElementsByTagName (common.ndsDtd->TAG_DRIVER_FILTER)->item(0);
 if (filterElement != 0)
 {
 filter = DriverFilter_new(filterElement);
 } else
 {
 //if weren't able to setup a filter, setup a null
 //filter so we don't have to check for filter != 0 everywhere
 filter = DriverFilter_new(0);
 }
 return common.setReturnDocument(common.createSuccessDocument());
 } catch (ShimException e)
 {
 return common.setReturnDocument(common.createStatusDocument
(STATUS_LEVEL_FATAL,e.getMessage()));
 } catch (...)
 {
 //something bad happened...
 return common.setReturnDocument(common.createStatusDocument(
STATUS_LEVEL_FATAL,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the init method in
the PublicationShimImpl.cpp file.
Writing a DirXML Driver 75

../../../samplecode/dirxml_sample/index.htm

76 NDK: Novel

novdocx (E
N

U
) 01 February 2006
PublicationShim start
Publishes data from the external application to eDirectory.

Syntax

Java

public XmlDocument start (
 XmlCommandProcessor execute)

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL start (
 XmlCommandProcessor *execute);

Parameters
execute

(IN) Points to the callback method that starts the publisher which runs on a separate thread and
loops listening for data from the external database.

Remarks
The DirXML engine calls the start method to allow the driver to monitor the application and publish
application events (changes) to the DirXML engine. The publisher should not return from the start
method until instructed to do so from the DriverShim shutdown method. An exception to this rule is
if a fatal error occurs. If the publisher returns from the start method before the DriverShim shutdown
method is called, the DirXML engine shuts down the driver.

The execute argument is an interface through which the publisher submits event documents to the
DirXML engine. The XmlCommandProcessor interface has a single method named execute with the
following syntax.

Java Syntax

 XmlDocument execute(
 XmlDocument doc,
 XmlQueryProcessor query);

C++ Syntax

 XmlDocument * METHOD_CALL execute(
 XmlDocument *doc,
 XmlQueryProcessor *query);
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The publisher constructs an XML document describing the application event and submits it through
the execute method, along with an interface that the DirXML engine can use to query back to the
publisher if the engine determines that it requires additional data. The DirXML engine returns an
XML document containing the status of the event processing.

The skeleton driver does not publish any information to DirXML other than status documents
should an error occur. However the VRTest driver does publish events, and therefore, examples from
the VRTest driver will be used in this section to illustrate the publication of events. For the format of
all possible input and output documents, see Chapter 7, “eDirectory DTD Commands and Events,”
on page 117.

Add Event

The VRTest driver published the following document to the DirXML engine in response to a VRTest
application change.

<nds dtdversion="1.0" ndsversion="8.5">
 <input>
 <add class-name="User Object" src-dn="\novell\JJones">
 <association>27</association>
 <add-attr attr-name="Family Name">
 <value>James</value>
 </add-attr>
 <add-attr attr-name="First Name">
 <value>Jones</value>
 </add-attr>
 <add-attr attr-name="Telephone">
 <value>(801) 555-1234</value>
 </add-attr>
 </add>
 </input>
</nds>

The above document indicates that an object of application class "User Object" with three attributes
was added to the VRTest application.

The DirXML engine responded with the following document.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <output>
 <status event-id="" level="success"></status>
 </output>
</nds>

The response document indicates that the event was processed by the engine according to any rules
in place and that no errors occurred.

All events submitted to the DirXML engine must have an <association> value. For more
information on the elements that must be included in an add event, see <add> (page 127).
Writing a DirXML Driver 77

78 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Modify Event

When the object corresponding to the example above was later modified, the VRTest publisher sent
the following document to the DirXML engine.

<nds dtdversion="1.0" ndsversion="8.5">
 <input>
 <modify class-name="User Object" src-dn="\novell\JJones">
 <association>27</association>
 <modify-attr attr-name="Telephone">
 <add-value>
 <value>(801) 555-1235</value>
 </add-value>
 <add-value>
 <value>(801) 555-1236</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

The above document informs DirXML that the application object associated with the eDirectory
object containing the association value "27" had two values added to its "Telephone" attribute.

For more information on the elements that must be included in a modify event, see <modify>
(page 141).

Delete Event

If the application object is later deleted, the publisher submits the following event document.

<nds dtdversion="1.0" ndsversion="8.5">
 <input>
 <delete class-name="User" src-dn="\novell\JJones">
 <association>27</association>
 </delete>
 </input>
</nds>

For more information on the elements that must be included in a delete event, see <delete>
(page 132).

Sample Code

Java Sample Code

The following code from the Java skeleton driver sends messages to DSTrace, checks to see if it has
received a stop request, and returns an XMLDocument.

public XmlDocument start(XmlCommandProcessor execute)
 {
 //NOTE: this implements a polling method of communication with
the
 //application. This may not be appropriate if the application
supports
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 //an event notification system
 tracer.trace("start");

 //loop until we’re told to shutdown (or some fatal error occurs)
 while(!shutdown)
 {
 // skeleton implementation just wakes up every so often to
 // see if it needs to shutdown and return.
 try
 {
 tracer.trace("polling...");
 //In a real driver, we’d do whatever was necessary to ask
the
 //application what changed and build an input document to
publish
 //the change events to DirXML.

 //wait for subscriber channel thread to wake us up, or for
polling
 //interval to expire.
 //NOTE: the use of the semaphore is highly recommended. It
prevents
 //a long polling interval from interfering with the orderly
 //shutdown of the driver.
 synchronized(semaphore)
 {
 //our pollingInterval value is in seconds,
 //The Object.wait() takes milliseconds
 semaphore.wait(pollingInterval * 1000);
 }
 }
 catch(InterruptedException ie)
 {
 }
 }
 tracer.trace("stopping");
 return createSuccessDocument();
 }

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the start method in
the SolutionPublicationShim.java file and the PublicationShimImpl.java file.

C++ Sample Code

The following code from the skeleton driver sends messages to DSTrace, checks to see if it has
received a stop request, and returns an XmlDocument.

XmlDocument * METHOD_CALL SkeletonPublisher::start(
 XmlCommandProcessor * ndsExecute)

{
 try
 {
 //NOTE: this implements a polling method of communication with
Writing a DirXML Driver 79

../../../samplecode/dirxml_sample/index.htm

80 NDK: Novel

novdocx (E
N

U
) 01 February 2006
the
 //application. This may not be appropriate if the application
 //supports an event notification system
 common.tracer->trace("start");

 //loop until we're told to shutdown (or some fatal error occurs)
 while(!shutdown && !aborted)
 {
 try
 {
 // skeleton implementation just wakes up every so often to
 // see if it needs to shutdown and return.
 common.tracer->trace("polling...");

 //In a real driver, we'd do whatever was necessary to ask
 //the application what changed and build an input document
 //to publish the change events to DirXML.

 //wait for subscriber channel thread to wake us up, or for
 //polling interval to expire.
 //NOTE: the use of the semaphore is highly recommended. It
 //prevents a long polling interval from interfering with the
 //orderly shutdown of the driver.
 waitSemaphore(semaphore,pollingInterval * 1000);
 } catch (ShimException e)
 {
 //some sort of error happened...publish the error to DirXML
 //but don't quit (definitely don't quit if all that happened
 //is we lost communication with the app...
 //we should simply try and reestablish it later)
 Element * input = NdsDtd_newInputDocument();

NdsDtd_addStatus(input,STATUS_LEVEL_ERROR,e.getMessage(),0);
 XmlDocument * pubDoc = XmlDocument_newFromDOM(input-
>getOwnerDocument());
 ndsExecute->execute(pubDoc,this);
 XmlDocument_destroy(pubDoc);

 //NOTE that we must destroy the XmlDocument and the DOM
 //document separately. The XmlDocument doesn't take
 //ownership of the DOM document
 input->getOwnerDocument()->destroy();

 //loop around to try again
 }
 }
 if (!aborted)
 {
 common.tracer->trace("stopping");
 common.setReturnDocument(common.createSuccessDocument());
 } else
 {
 common.tracer->trace("aborting");

l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
common.setReturnDocument(common.createStatusDocument(STATUS_LEVEL_FATA
L,MSG_ABORTED));
 }
 return common.getReturnDocument();
 } catch (...)
 {
 //something bad happened...
 return common.setReturnDocument(common.createStatusDocument
(STATUS_LEVEL_FATAL,MSG_BAD));
 }
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the start method in
the PublicationShimImpl.cpp file.

2.8 Implementing the XmlQueryProcessor
Interface
The XmlQueryProcessor interface must be implemented by the driver because the
XmlCommandProcessor execute method requires as its second parameter an object that implements
the XmlQueryProcessor interface. The XmlQueryProcessor interface is used by the DirXML engine
to query the publisher when additional data is required in the course of processing an event.

An object implementing the XmlQueryProcessor interface is also passed to the Subscriber’s execute
method so that the subscriber can query back into eDirectory, if necessary.

Most drivers implement the XmlQueryProcessor interface in the publisher object, although this is
not required.The implementation of the XmlQueryProcessor interface and the query handling for the
subscriber execute method can usually share most code.

The XmlQueryProcessor interface consists of a single method, query, which performs the query
described in the XML document argument.

For Javadoc, see XmlQueryProcessor (../api/com/novell/nds/dirxml/driver/
XmlQueryProcessor.html).
Writing a DirXML Driver 81

../../../samplecode/dirxml_sample/index.htm
../api/com/novell/nds/dirxml/driver/XmlQueryProcessor.html

82 NDK: Novel

novdocx (E
N

U
) 01 February 2006
query
Executes an XML-encoded query and returns an XML-encoded results.

Syntax

C++

#include "NativeInterface.h"

XmlDocument * METHOD_CALL query (
 XmlDocument *doc);

Java

public XmlDocument query (
 XmlDocument doc)

Parameters
doc

(IN) Points to a document containing an XML encoded command.

Remarks
The doc argument contains an XML document with the formulated query. The return document
contains either the result of the query or a status element in case of error.

For information on the elements that can be contained in the query document, see <query>
(page 151).

Sample Code

Java Example Code

The following code from the SkeletonPublication.java file shows how to set up the query
method.

public XmlDocument query(XmlDocument doc)
{
 tracer.trace("query");
 //since this is a skeleton, and there is nothing to query,
 // just return an empty output document with a success
 // status. The absence of an <instance> element
 //tells DirXML that nothing matched the query.
 return createSuccessDocument();
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the query method in
the SolutionQueryHandler.java file and the PublicationShimImpl.java file.
l Identity Manager (DirXML) Driver Kit

../../../samplecode/dirxml_sample/index.htm

novdocx (E
N

U
) 01 February 2006
C++ Example Code

The following code from the SkeletonPublisher.cpp file shows how to set up the query method.

XmlDocument * METHOD_CALL
SkeletonPublisher::query(
 XmlDocument * document)
{
 common.tracer->trace("query");
 //since this is a skeleton, and there is nothing to query,
 // just return an empty output document with a success
 // status. The absence of an <instance> element tells
 // DirXML that nothing matched the query.
 return common.setReturnDocument(common.createSuccessDocument());
}

In the DirXML sample code (../../../samplecode/dirxml_sample/index.htm), see the query method in
the PublicationShimImpl.cpp file.

2.9 Dealing with XML Documents
All communication between the DirXML engine and the application driver takes the form of XML
documents (with the exception of DriverShim getSubscriptionShim and getPublicationShim
methods).

DirXML SDK provides several methods of dealing with XML documents:

• Document Object Mode (DOM)
• Simple API for XML (SAX)
• XDS Libraries
• Serialized XML (byte sequence)

Typically your driver will deal with XML documents using the DOM or XDS libraries, but there
may be drivers for which it is more convenient to use SAX or even a serialized document.

All XML document arguments and returns for interface methods use an abstraction named
XmlDocument to encapsulate the underlying XML representation. This allows the DirXML engine
to supply the document in one form and the driver to consume the document in another form. The
converse is also true. For example, the driver could receive a serialized XML document from the
application and supply it in that form to the XmlDocument object. The DirXML engine would then
consume it as a DOM tree.

2.9.1 Java Sample Code
The XmlDocument abstraction has the following methods for obtaining the underlying XML
document in the desired form.

org.w3c.Document getDocument();
byte[] getDocumentBytes(java.lang.String encoding);
org.xml.sax.Parser getDocumentSAX();
org.xml.sax.InputSource getDocumentInputSource();
java.lang.String getDocumentString();
Writing a DirXML Driver 83

../../../samplecode/dirxml_sample/index.htm

84 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The XmlDocument abstraction is implemented as a class in Java
(com.novell.nds.dirxml.driver.XmlDocument). The following examples illustrate the most common
ways of obtaining the document representation and setting the document representation. There are
additional methods. See the online javadocs (../ref/index.html).

DOM

The following code illustrates obtaining an XML document as a DOM tree from the XmlDocument
object.

void example(XmlDocument doc)
{
 Document inputDocument = doc.getDocument();
}

The following code illustrates creating a DOM document and setting the XmlDocument object from
the DOM document.

XmlDocument example()
{
 //create a DOM Document using the document factory
Document returnDoc = com.novell.xml.dom.DocumentFactory.newDocument();
 //create the <nds> root element
 Element nds = returnDoc.createElement("nds");
 returnDoc.appendChild(nds);
 //set the various xds attributes
 nds.setAttribute("ndsversion","8.5");
 nds.setAttribute("dtdversion","1.0");
 return new XmlDocument(returnDoc);
}

SAX

The following sample illustrates obtaining the XML document as a series of SAX events from the
XmlDocument object.

class Handler implements DocumentHandler
{
 ...
};
void example(XmlDocument doc)
{
Parser parser = doc.getDocumentSAX();
InputSource inputSource = doc.getDocumentInputSource();
parser.setDocumentHandler(new Handler());
parser.parse(inputSource);
}

The following sample illustrates setting the XmlDocument object from objects that implement the
SAX Parser and SAX InputSource interfaces.

class MyParser implements Parser
{
 ...
}

l Identity Manager (DirXML) Driver Kit

../ref/index.html

novdocx (E
N

U
) 01 February 2006
XmlDocument example()
{
 MyParser parser = new MyParser();
 InputSource inputSource = new InputSource("file.xml");
return new XmlDocument(parser,inputSource);
}

Serialized XML

The following sample illustrates obtaining the XML document in a serialized form.

void example(XmlDocument doc)
{
 byte[] bytes = doc.getDocumentBytes("UTF-8");
}

The following sample illustrates setting the XmlDocument object from a serialized XML document
contained in a byte array:

XmlDocument example(byte [] bytes)
{
 return new XmlDocument(bytes);
}

2.9.2 C++ Sample Code
The XmlDocument abstraction has the following C++ methods for obtaining the underlying XML
document in the desired form.

 DOM::Document * METHOD_CALL getDocument(); SAX::Parser *
METHOD_CALL getDocumentSAX(); SAX::InputSource * METHOD_CALL
getDocumentInputSource(); const unsigned char * METHOD_CALL
getDocumentBytes(const
 unicode * encoding, int endian, int * length);

The XmlDocument abstraction is implemented as an interface in C++ (defined in
NativeInterface.h). Methods are also defined in the following header files.

Table 2-2 XmlDocument header files

File Description

dom.h Defines interfaces and methods which are patterned after the Java implementation
of the W3C DOM (Document Object Model) Level 1.

InterfaceFactory.h Defines the factories and the destructors.

sax.h Defines interfaces and methods for receiving information about XML documents.
They are patterned after the Java implementation of version 1 of the Simple API for
XML (SAX) event interface.

OutputStream.h Defines an interface modeled on java.io.OutputStream for writing to a byte sink.

XMLWriter.h Creates an XMLWriter.
Writing a DirXML Driver 85

86 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The following examples illustrate the most common ways of obtaining the document representation
and setting the document representation. There are additional methods. See the
NativeInterface.h file.

DOM

The following code illustrates obtaining the XML document as a DOM tree from the XmlDocument
interface:

XmlDocument *
SubscriptionShimImpl::execute(
XmlDocument * inputDoc
XmlQueryProcessor * query)
{
DOM::Document * document = inputDoc->getDocument();
 ...
}

The following illustrates creating an XmlDocument as a DOM tree. (The factory methods are
defined in InterfaceFactory.h)

//create a document using DirXML factory method
DOM::Document * document = Document_new();
//create the document tree
DOM::Element * ndsElement = document->createElement(NDS_ELEMENT_NAME);
 ...
//create the XmlDocument instance
XmlDocument * returnDoc = XmlDocument_newFromDOM(document);
...
//sometime later, after returnDoc is no longer being used:
XmlDocument_destroy(returnDoc);
document->destroy();

SAX

The following code illustrates obtaining the XML document as a series of SAX events.

XmlDocument *
SubscriptionShimImpl::execute(
XmlDocument * inputDoc,
XmlQueryProcessor * query)
{
SAX::Parser * eventGenerator;
SAX::InputSource * inputSource;
eventGenerator = inputDoc->getDocumentSAX();
inputSource = inputDoc->getDocumentInputSource();
//my event handler is a class that implements the DocumentHandler
interface
//declared in sax.h
eventGenerator->setDocumentHandler(myEventHandler);
//this call causes the SAX events to be sent to the document handler
eventGenerator->parse(inputSource);
...
}

l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The following code illustrates creating an XmlDocument using SAX events. For ease of illustration,
the SAX event source is the DirXML supplied XML parser, using a file as input.

SAX::InputSource * inputSource = InputSource_new();
inputSource->setSystemId("tempfile.xml");
SAX::Parser * parser = Parser_new();
XmlDocument * xmlDoc = XmlDocument_newFromSAX(parser, inputSource);
...
//sometime later, after xmlDoc is no longer being used:
XmlDocument_destroy(xmlDoc);
Parser_destroy(parser);
InputSource_destroy(inputSource);

Serialized XML

The following code illustrates obtaining a serialized representation of the XML document.

XmlDocument *
SubscriptionShimImpl::execute(
XmlDocument * inputDoc
XmlQueryProcessor * query)
{
static const unicode ENCODING[] = {’U’,’T’,’F’,’-’,’8’,0};
const unsigned char * bytes;
int length;
bytes = inputDoc->getDocumentBytes(ENCODING, LITTLE_ENDIAN, &length);
...
}

The following code illustrates creating an XmlDocument from a byte array.

static const unicode ENCODING[] = {’U’,’T’,’F’,’-’,’8’,0};
//make a driver-specific call to get the serialized XML from somewhere
int length;
unsigned char * bytes = get_bytes_from_somewhere(&length);
//create the XmlDocument from the serialized XML
XmlDocument * xmlDoc =
XmlDocument_newFromBytes(bytes,length,ENCODING,LITTLE_ENDIAN);
...
//sometime later, when xmlDoc is no longer in use...
XmlDocument_destroy(xmlDoc);
release_bytes_from_somewhere(bytes);

2.10 Driver State
DirXML provides a mechanism for your driver to save state information between invocations. State
information may be saved separately for the driver object, the subscriber object, and the publisher
object. Any saved state information is passed to the object’s init method as part of the initialization
parameters document. The state information is stored in an attribute on the DirXML-Driver object
corresponding to your driver.

It is important to note that, in general, it is inappropriate for a driver to store configuration
information outside of eDirectory where it cannot be remotely configured using ConsoleOne,
iManager, or other remote configuration utilities.
Writing a DirXML Driver 87

88 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Driver state is written by returning or publishing an <init-params> element containing one or more
of the following elements: <driver-state>, <subscriber-state>, and <publisher-state>. When
returning state to be written, the <init-params> element is a child of the <output> element in the
XDS document. When publishing state, the <init-params> element is a child of the <input> element
in the XDS document. State may be written at any time in a document returned to the
DirXMLengine and may be written at any time by publishing a document to the DirXML engine on
the publisher channel.

The actual state information can be any information desired. The content of the <driver-state>,
<subscriber-state>, and <publisher-state> elements is stored exactly as presented to the DirXML
engine.

The following example XML document shows a sample document sent to the DirXML engine that
writes publisher state.

<nds dtdversion="1.0" ndsversion="8.5">
 <input>
 <init-params>
 <publisher-state>
 <sync-up-to>965252784</sync-up-to>
 <last-object>
 <name>Test</name>
 <id>2349</id>
 </last-object>
 </publisher-state>
 </init-params>
 </input>
</nds>

The content of the <publisher-state> element is not defined by DirXML. The content may be any
XML representation of the data that is convenient for your driver. The state for any or all of the
driver, subscriber, and publisher objects can be written on the subscriber channel as an <output>
document or publisher channel as an <input> document.

2.11 Driver Configuration
The DirXML engine, in conjunction with ConsoleOne, provides a mechanism for you to define
driver-specific configuration parameters. This is accomplished with an XML file that describes the
parameters. ConsoleOne uses this XML file to dynamically construct a simple user interface that
administrators can use to configure your driver for a particular installation.

In general, your driver must be configurable from Novell adminstrator utilities such as Console One
and iManager.

A sample XML configuration file from the Java skeleton driver appears below:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- this file contains a sample driver options xml document;
 it is designed for use with the Java DirXML skeleton
 driver
com.novell.nds.dirxml.driver.skeleton.SkeletonDriverShim

 It illustrates some of the concepts in driver options
 files
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
-->
<driver-config name="Java Skeleton Driver">
 <driver-options>
 <option-1 display-name="Sample String option">This is a string</
option-1>
 <option-2 display-name="Sample int option (enter an
integer)">10</option-2>
 </driver-options>
 <subscriber-options>
 <sub-1 display-name="Sample Subscriber option">String for
Subscriber</sub-1>
 </subscriber-options>
 <publisher-options>
 <pub-1 display-name="Sample Publisher option">String for
Publisher</pub-1>
 <polling-interval display-name="Polling interval in seconds">2</
polling-interval>
 </publisher-options>
</driver-config>

Your configuration XML file must conform to the above format, in that it must contain a <driver-
config> element with zero or one of each the following elements as children: <driver-options>,
<subscriber-options>, and <publisher-options>.

The children of the <driver-options>, <subscriber-options>, and <publisher-options> elements can
be named anything you like and should have an attribute named "display-name". The value of the
display-name attribute is used to label an entry field in the user interface generated by ConsoleOne.

The <driver-options>, <subscriber-options>, and <publisher-options> together with their content are
passed to the corresponding object init methods in your driver as children of the <init-params>
element.

In addition, the DirXML engine provides a mechanism for attribute values from an eDirectory
object to be passed to your init methods. This is accomplished by placing a <config-object> element
as a child of one of the options elements. The content of the <config-object> element is a <query>
that specifies the eDirectory object and attributes to read. The <config-object> element has a
display-name attribute that is used to label a field in the generated user interface. The user interface
field allows the user to specify the eDirectory object referenced in the <query> element’s "dest-dn"
attribute (see example, below). The <read-attr> element underneath a <query> element has a "type"
attribute with two possible values: "default" and "xml". If "xml" is specified, the attribute is assumed
to be serialized XML and will be parsed and pasted into the initialization document as XML, rather
than as a string, octet string, or stream.

For example, the following modifications to the XML configuration file for the Java skeleton driver
results in the XML data from the skeleton driver’s Create Rule (in this particular installation) being
passed to the DriverShim init method:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- this file contains a sample driver options xml document
 it is designed for use with the Java DirXML skeleton driver
 com.novell.nds.dirxml.driver.skeleton.SkeletonDriverShim

 It illustrates some of the concepts in driver options files
-->
<driver-config name="Java Skeleton Driver">
Writing a DirXML Driver 89

90 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <driver-options>
 <config-object display-name="Create Rule">
 <query dest-dn="novell\Driver Set\Java Skeleton
Driver\Subscriber\Create Rule" scope="entry">
 <read-attr attr-name="XmlData" type="xml"/>
 </query>
 </config-object>
 <option-1 display-name="Sample String option">This is a string</
option-1>
 <option-2 display-name="Sample int option (enter an
integer)">10</option-2>
 </driver-options>
 <subscriber-options>
 <sub-1 display-name="Sample Subscriber option">String for
Subscriber</sub-1>
 </subscriber-options>
 <publisher-options>
 <pub-1 display-name="Sample Publisher option">String for
Publisher</pub-1>
 <polling-interval display-name="Polling interval in seconds">2</
polling-interval>
 </publisher-options>
</driver-config>

Using this configuration file, the DirXML engine sends the following initialization document to the
skeleton driver.

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0">DirXML</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <init-params src-dn="\PERIN-TAO\novell\Driver Set\Java Skeleton
Driver">
 <authentication-info>
 <server>server.app:400</server>
 <user>User1</user>
 <password><!-- content suppressed --></password>
 </authentication-info>
 <driver-options>
 <instance class-name="DirXML-Rule" src-dn="PERIN-
TAO\novell\Driver Set\Java Skeleton Driver\Subscriber\Create Rule"
src-entry-id="35867">
 <attr attr-name="XmlData">
 <value timestamp="965252142#6" type="xml">
 <create-rules>
 <create-rule class-name="User">
 <required-attr attr-name="Surname"/>
 <required-attr attr-name="Telephone Number"/>
 </create-rule>
 </create-rules>
 </value>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 </attr>
 </instance>
 <option-1 display-name="Sample String option">This is a
 string</option-1>
 <option-2 display-name="Sample int option (enter an
 integer)">10</option-2>
 </driver-options>
 </init-params>
 </input>
</nds>

The above document shows that the data of the XmlData attribute has been embedded in the
initialization document. Reading the create rule is not useful for a driver, but it does serve to
illustrate the concept of obtaining the value of an eDirectory attribute as part of the driver
initialization data.

2.12 Additional Tips for C++ Drivers
C++ requires memory management and does not provide generated documentation for helper
classes and methods. The following sections provide information on these topics.

2.12.1 Memory Management
As with any C++ program, a DirXML driver must carefully manage the objects it creates. Primarily,
a driver must destroy any XML document objects that it creates, and a driver must not destroy any
XML document objects passed to it. This requires management for two primary areas.

Documents submitted to DirXML. Documents submitted to DirXML are submitted either
through the XmlCommandProcessor interface passed to the PublicationShim::start method or
through the XmlQueryProcessor interface passed to the SubscriptionShim::execute method. In
either case the driver must handle destroying the XmlDocument object passed to DirXML as well as
the underlying XML representation. For example, if the driver uses the factory methods
Document_new and XmlDocument_newFromDOM, then the driver must destroy the
XmlDocument object through XmlDocument_destroy method and the DOM object through
DOM::Document::destroy method.

Documents returned to DirXML. Documents returned to DirXML are returned from
DriverShim::init, DriverShim::shutdown, SubscriptionShim::init, SubscriptionShim::execute,
PublicationShim::init, and PublicationShim::start. Such documents must not be destroyed until they
are no longer used. DirXML guarantees that a return document is no longer referenced when

• Another method in the same interface is called. For example, the document returned from
SubscriptionShim::init() may be destroyed when SubscriptionShim::execute method is called.

• The same method is called again. For example, a document returned from a previous call of
SubscriptionShim::execute method may be destroyed during a subsequent call to
SubscriptionShim::execute method.

• The DriverShim::destroy method is called.

Any other objects that the driver creates are also the driver’s responsibility to destroy. For example,
if the driver calls FileOutputStream_newFromName, then the driver must also call
FileOutputStream_destroy with the returned object when it is no longer used.
Writing a DirXML Driver 91

92 NDK: Novel

novdocx (E
N

U
) 01 February 2006
2.12.2 C++ Utility Functions and Interfaces
There are a number of utility functions available. These fall into the following general categories:

• Interface factories and destructors
• Encoding support
• Support for DirXML’s XML dialect (XDS Support)

The following sections provide a brief overview of the utility functions. For a more complete
description, see XML Interfaces for C++.

Interface Factories and Destructors

DirXML SDK supplies implementations of all required interfaces.The interface factories and
corresponding destructors are defined in InterfaceFactory.h. If a factory method does not
have a corresponding destructor method, the destructor method is defined in the interface itself (see
DOM::Node::destroy, for example).

A driver writer is free to implement the interfaces for passing data to DirXML from the driver if
such an implementation works better for a particular driver. However, all interfaces passed to the
driver from DirXML will use DirXML’s underlying implementation.

General Interfaces

• DriverFilter_new—Creates an implementation of DriverFilter. This is a useful for drivers who
need to make use of the Event Filter in their driver.

• DriverFilter_destroy—Destroys an implementation of DriverFilter returned from the factory
method.

• Trace_new—Creates an implementation of Trace. This is useful for debugging. The Trace
interface causes messages to be written to the DSTrace screen and, optionally, a file.

• Trace_destroy—Destroys an implementation of Trace returned from Trace_new.

DOM Interfaces

• Document_new—Creates a new DOM Document object using the DirXML native
implementation.

• Document_destroyInstance—Destroys a DOM Document object returned from
Document_new.

• XmlDocument_newFromDOM—Creates a new XmlDocument implementation from a DOM
Document object.

• XmlDocument_destroy—Destroys an XmlDocument implementation returned from a factory
method.

Serialized XML Interfaces

• FileOutputStream_newFromName—Creates an implementation of OutputStream that uses a
standard C library FILE as the underlying stream.

• FileOutputStream_newFromFILE—Creates an implementation of OutputStream that uses a
standard C library FILE as the underlying stream.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• FileOutputStream_destroy—Destroyes a FileOutputStream returned from a factory method.
• ByteArrayOutputStream_new—Creates an implementation of OutputStream that uses a byte

array as the underlying stream.
• ByteArrayOutputStream_getDataSize—Returns the size of the data in a

ByteArrayOutputStream returned from ByteArrayOutputStream_new.
• ByteArrayOutputStream_getBytes—Returns a pointer to the data in a ByteArrayOutputStream

returned from ByteArrayOutputStream_new.
• ByteArrayOutputStream_destroy—Destroyes a ByteArrayOutputStream returned from the

factory method.
• XmlDocument_newFromBytes—Creates a new XmlDocument implementation from a byte

array using the DirXML native implementation.
• XmlDocument_destroy—Destroys an XmlDocument implementation returned from a factory

method.

SAX Interfaces

• Parser_new—Creates a new SAX Parser implementation using the DirXML native
implementation.

• Parser_destroy—Destroys a SAX Parser returned from Parser_new.
• InputSource_new—Creates a new SAX InputSource implementation using the DirXML native

implementation.
• InputSource_destroy—Destroys a SAX InputSource returned from InputSource_new.
• SAXException_new—Creates an implementation of SAXException. This is useful for drivers

implementing the SAX DocumentHandler interface.
• SAXParseException_new—Creates an implementation of SAXParseException. This is useful

for drivers implementing the SAX Parser interface.
• XmlDocument_newFromSAX—Creates a new XmlDocument implementation from a SAX

Parser and InputSource.
• XmlDocument_destroy—Destroys an XmlDocument implementation returned from a factory

method.

 Encoding Support

The encoding support functions are for converting to and from Base64 encoding and for converting
between UTF-8 and UTF-16 encoding. Base64 encoding is how DirXML encodes binary data in the
XML documents used for encoding commands and events. UTF-8 and UTF-16 are two encoding
methods for Unicode characters using 8- and 16-bit encoding units, respectively. Base64 functions
are declared in Base64Codec.h, and the UTF functions are in UTFConverter.h.

• Base64Codec_encode—Encodes a byte array into UTF-16 characters using Base64 encoding.
• Base64Codec_encodeFree—Frees the UTF-16 string returned from Base64Codec_encode.
• Base64Codec_decode—Decodes a UTF-16 character string that represents binary data into a

byte array.
• Base64Codec_decodeFree—Frees the byte array returned from Base64Codec_decode.
• UTFConverter_16to8—Converts a UTF-16 string to UTF-8.
• UTFConverter_8to16—Converts a UTF-8 string to UTF-16.
Writing a DirXML Driver 93

94 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• UTFConverter_free—Frees a string returned from UTFConverter_16to8 or
UTFConverter_8to16.

XDS Support

XDS (XML Directory Services) is the name of the XML dialect used by DirXML. The XDS support
functions allow access to the strings necessary to create a valid XDS document and provide simple
methods to create empty XDS input and output documents. The XDS support functions are in
NdsDtd.h and include the following:

• NdsDtd_getStrings—Returns a pointer to a structure containing pointers to const unicode
strings. These strings are tag names, attribute names, and attribute values defined in nds.dtd.
See the actual include file for the structure declaration.

• NdsDtd_newInputDocument—Creates a new, empty input document for publishing data to
DirXML.

• NdsDtd_newOutputDocument—Creates a new, empty output document for returning data to
DirXML.

• NdsDtd_addStatus—Adds a status element to an input or an output element in an XDS
document.
l Identity Manager (DirXML) Driver Kit

3
novdocx (E

N
U

) 01 February 2006
3Debugging the Driver

A DirXML® driver interacts with many external variables: the rules, eDirectory, the application, and
the DirXML engine. To simplify the process of discovering the source of a problem, use the
following.

3.1 Using DSTrace and the DirXML Trace Log
DSTrace is an eDirectory trace facility that displays messages from internal eDirectory activities.
These messages can be displayed on the DSTrace screen, logged to a file, or both. The messages can
be filtered by category. For DirXML driver development, you will want to activate the DirXML
Drivers messages.

To enable the DirXML Drivers messages, select the platform and follow the steps.

Windows NT

1 From the eDirectory console, select NDS Trace Facility and press the Start button.

The NDS Trace Facility screen appears.
2 From the Edit option on the NDS Trace Facility menu bar, select Options.
3 Press the Clear All button.
4 Check the DirXML Drivers box.
5 If you want DirXML Drivers messages enabled each time you run DSTrace, press the Save

Default button.
6 To activate the settings and return to the trace screen, press the OK button.

NetWare

1 From the server console, enter

dstrace

2 To start the trace facility, enter
dstrace on

3 To enable DirXML driver messages, enter
dstrace +dvrs

4 To view the output, toggle to the DSTrace window.

Linux, Solaris, and Tru64 Unix

1 Enter following command in the shell: ndstrace.
2 2 Shut off all debug flags to avoid unnessesary messages. At the ndstrace screen, enter set

ndstrace = nodebug.
3 3 To enable DirXML driver messages, enter dstrace +dvrs.
4 4 To enable DirXML events, enter dstrace +dxml.
Debugging the Driver 95

96 NDK: Novel

novdocx (E
N

U
) 01 February 2006
5 5 To enable the log file option, enter dstrace file on.

On Unix systems, the events are written to the /var/nds/NDSTRACE.LOG file.

3.1.1 Enabling Verbose DirXML Driver Messages
Verbose DirXML Driver messages can be used to determine what is happening in the DirXML
engine and what your driver is processing. To enable verbose messages, complete the following
steps.

1 From ConsoleOne, right click on DirXML-Driver Set object and select the Properties option.
2 Select the Other tab.
3 Press the Add button.
4 Select DirXML-DriverTraceLevel and press the OK button.
5 Enter one of the following values:

0 — Displays no verbose messages.
1— Displays DirXML engine basic processing messages.
2 — Displays messages from level 1 plus the XML documents that are passed between the

engine and driver.
3 — Displays messages from level 2 plus additional rule processing messages. In addition,

displays the XML documents that result from stylesheet rule processing.
6 Press the OK button.

3.1.2 Enabling the DirXMLTrace Log
DSTrace messages are useful, but they eventually scroll out of the DSTrace buffer. To preserve the
DirXML messages, you can set up a log file into which the DirXML Driver messages will be written
(even when DSTrace is not running). To enable the trace log, complete the following steps:

1 From ConsoleOne, right click on DirXML-Driver Set object and select the Properties option.
2 Select the Other tab.
3 Press the Add button.
4 Select DirXML-JavaTraceFile and press the OK button.
5 Enter the name of a file into which the DirXML Driver messages are to be written.

The location for the log file depends on the platform:
• On Win32, if you do not enter a path with the filename, the default location is the

c:\novell\nds\dibfiles directory.
• On NetWare, you cannot enter a path. The log file is written to the sys:\system directory.

6 Press the OK button on the Properties dialog.

3.1.3 Adding Trace Messages to Your Driver
Drivers should send messages to DSTrace by creating and using one or more DirXML trace objects.
Using these objects, your driver can write messages and XML documents to the DSTrace screen and
the DirXML Trace Log.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Creating the Trace Object

Each trace object has an identifying string associated with it, and this string appears in the trace
message. A driver typically creates three trace objects:

• One associated with the driver object
• One associated with the subscriber object
• One associated with the publisher object

For example, if the subscriber object creates a trace object with the identifying string "NdsToNds
Subscriber" then all trace messages output using that object will look similar to the following.

 TRACE: NdsToNds Subscriber: <message>

Java

In Java the trace objects are simply instances of the com.novell.nds.dirxml.driver.Trace class. For
example:

//In the class definition
Trace tracer;

//In the constructor
tracer = new Trace("My Subscriber");

C++

In C++ a factory method from InterfaceFactory.h, Trace_new(), is called.

//in the class definition:
Trace * tracer;

//in the constructor:
Trace * tracer = Trace_new("My Subscriber");

//in the destructor:
Trace_destroy(tracer);

Writing to the Trace Object

Writing a message is as simple as calling the trace method with a literal string argument.
Additionally, XML documents can be written to the trace screen and log, using an overload of the
trace method. There are also trace method overloads that let you specify at what level the associated
message appears. For example, if you want to specify an excruciating level of detail for debugging,
you could specify that such messages only appeared at DirXML-DriverTraceLevel values of 4 or
higher. See the Javadocs and Trace Interface in XML Interfaces for C++ for detailed descriptions of
the trace overloads.

Java

//output a message to the trace facility
tracer.trace("init");
Debugging the Driver 97

98 NDK: Novel

novdocx (E
N

U
) 01 February 2006
//output a document to the trace facility
tracer.trace(initDocument);

C++

//output a message to the trace facility
tracer->trace("init");

//output a document to the trace facility
tracer->trace(initDocument);

3.2 Using a Debugger with a C++ Driver
Debugging varies by platform. Currently, C++ driver debugging is not available on Unix platforms.

3.2.1 DLLs on Windows (NT, 2000, XP)
DirXML drivers run as part of the eDirectory process (dhost.exe). This means that you need to
attach a debugger to the dhost.exe process in order to debug your driver. The process is easier if
dhost.exe is not running as a service. To start dhost.exe from the command line, use the following
command line option:

 dhost /datadir=c:\novell\nds\dibfiles

If you have not used a default installation, replace the specified path with the location of the dibfiles
directory.

You can also start dhost.exe from within a debugger using the above command line as a model.

Once a debugger attached, you can set your breakpoints within your driver code. This may require
preloading your driver DLL module.

For Visual Studio, preloaded modules are configured under Project | Settings..., Debug tab,
Additional DLLs.

Your driver then needs to be started. Use ConsoleOne.

3.2.2 NLMs on NetWare
To debug an NLM driver, complete the following steps:

1 Load your NLM using load -d.
2 Set a breakpoint in your driver.
3 Start your driver using ConsoleOne.

3.3 Using a Debugger with a Java Driver
You cannot currently debug a Java driver on NetWare or Unix systems. For the Windows platform
(NT or 2000), the following debug interfaces and debuggers are available:

• “Agent Debugger” on page 99
• “Java Platform Debugger Architecture (JPDA)” on page 99
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• “Visual Cafe 3.0 Debugger” on page 99
• “JDB Debugger” on page 100

3.3.1 Agent Debugger
To use a debug agent, you must install the debug agent and then enable it. Complete the following
steps.

1 Obtain a copy of JDK 1.3.0.
2 Make a backup copy of the DirXML jre directory (default location—C:\novell\nds\jre).
3 Delete the DirXML jre directory.
4 Copy the jre directory from the JDK into the DirXML jre directory.
5 Copy the contents of the jdk/lib directory (includes tools.jar) into the DirXML jre/lib

directory.
6 Add the DirXML-JavaDebugPort attribute to the DirXML-DriverSet object.

6a From ConsoleOne, right click on the DirXML-DriverSet object and select the Properties
option.

6b Select the Other tab.
6c Press the Add button and select the DirXML-JavaDebugPort attribute.
6d Set the value to some TCP port not in use on your machine (8080 usually works).
6e Press the OK button.

7 Restart eDirectory.
8 Before the first driver starts, a small dialog will pop up with the debugger password. At this

point, you can choose to attach a debugger to the JVM and press OK.

Sometimes you can attach a debugger after you have dismissed the dialog that pauses for you to
attach to the JVM; sometimes you can’t.

3.3.2 Java Platform Debugger Architecture (JPDA)
To use a JPDA type debugger, you must set options for the JVM using a DirXML environment
variable: DHOST_JVM_OPTIONS. Java 2 options are set using this environment variable and
passed to the JVM by DirXML.

For more information on the environment variables, see “JVM Variables” on page 100. For
information on the JVM options and JPDA see Java Platform Debugger Architecture (http://
java.sun.com/products/jpda).

3.3.3 Visual Cafe 3.0 Debugger
The Visual Cafe debugger is an agent-type debugger.To set up a debug session, complete the
following steps.

1 Create a project for debugging.
2 Set the main class to “sun.tools.agent.EmptyApp”.
3 Set your source directories and input class files directories appropriately for your environment.
Debugging the Driver 99

http://java.sun.com/products/jpda

100 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4 Attach the debugger using Projects | Debug in Waiting VM. Use “localhost” as the host name
and the password supplied by the dialog box.

If you stop the debugging session in VisualCafe, it shuts down the JVM inside of eDirectory and you
will have to restart eDirectory to get it back up again.

The VisualCafe debugger has a lot of quirks. Be aware of the following:

• Sometimes it has trouble attaching to the JVM.
• Sometimes it gets internal java exceptions, after which no data will display until you shut down

VisualCafe and restart it.
• Often it will still stop at breakpoints that have been removed or disabled.

3.3.4 JDB Debugger
To attach the jdb debugger, complete the following steps.

1 Enter the following command:

jdb -host localhost -password <password>

2 Set the path to your source directories using the “use” command.

If you stop the debugging session in jdb, it shuts down the JVM inside of eDirectory and you will
have to restart eDirectory to get it back up again.

You can create a file called startup.jdb in the working directory that can contain commands
that will be executed when jdb starts. This is a good place to put the “use” command to set up the
source directories.

The password is really just an obfuscated version of the port number. Since you are picking a static
port number, you can reuse any of the passwords that are generated. If you see one that is easy to
memorize, remember and use it instead of using a new password every time.

3.3.5 JVM Variables
A number of environment variables may be set to control the JVM under Windows NT and
Windows 2000:

Table 3-1 JVM environment variables for Windows

Variable Description

DHOST_JVM_USE_VFPRINTF If set to a value other than “0”, causes the installation of a vfprintf
hook function that will write to a log file named “jvm_vfprintf.log” in
the temp directory. This will also enable verbose class and JNI
messages.

DHOST_JVM_VERBOSE_GC If set to a value other than “0”, enables verbose garbage collector
messages. This is only useful in conjunction with
JVM_USE_VFPRINTF.

DHOST_JVM_INITIAL_HEAP Specifies the value, in decimal number of bytes, of the initial JVM
heap size.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The following options can be used on NetWare:

Table 3-2 JVM environment variables for NetWare

DHOST_JVM_MAX_HEAP Specifies the value, in decimal number of bytes, of maximum JVM
heap size.

 DHOST_JVM_OPTIONS Specifies the arguments for the JVM 1.2. For example:

 -Xnoagent -Xdebug -Xrunjdwp: transport=dt_socket,server=y,
address=8000

Each option string is separated by whitespace. If an option string
contains whitespace, it must be enclosed in double quotes.

DHOST_JVM_DESTROY If set to a value other than “0”, causes the JVM loader thread to call
DestroyJavaVM() when DirXML is unloaded. This is useful to cause
the Java 2 hprof profiler to dump its data to a file.

NOTE: The JVM is unusable after this call and cannot be reloaded.
DHOST must be shutdown and restarted to use the JVM again. This
means DirXML cannot be restarted until DHOST has restarted.

Option Description

DIRXML_JVM_INITIAL_HEAP Specifies the value, in bytes, of the initial java heap size. This option
works with JVM 1.1.x and 1.2.x. Examples:

DIRXML_JVM_INITIAL_HEAP=4M
DIRXML_JVM_INITIAL_HEAP=4096K

DIRXML_JVM_MAX_HEAP Specifies the value, in decimal bytes, of the maximum java heap size.
This option works with JVM 1.1.x and 1.2.x. Examples:

DIRXML_JVM_MAX_HEAP=36M
DIRXML_JVM_MAX_HEAP=36864K

DIRXML_JVM_VIRTUAL_HEAP Specifies the value, in decimal bytes, of the virtual java heap size.
This option works with JVM 1.1.x and 1.2.x. Examples:

DIRXML_JVM_VIRTUAL_HEAP=36M
DIRXML_JVM_VIRTUAL_HEAP=36864K

DIRXML_JVM_OPTIONS Specifies the arguments for the JVM 1.2. For example:

 -Xnoagent -Xdebug -Xdebugport8080

Each option string is separated by whitespace. If an option string
contains whitespace, it must be enclosed in double quotes.

This option only works with JVM 1.2.x.

Variable Description
Debugging the Driver 101

102 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML_JVM_C_STACK_SIZE Specifies in decimal bytes the Java C process stack size. Examples:

DIRXML_JVM_C_STACK_SIZE=128K
DIRXML_JVM_C_STACK_SIZE=256K

Default: 128K

Option Description
l Identity Manager (DirXML) Driver Kit

4
novdocx (E

N
U

) 01 February 2006
4Introduction to the Rules and
Filters

DirXML® provides two complementary mechanisms for customizing the data synchronization
processes: transformation rules and event filters. As a driver developer, you need to understand how
the rules and filters work so that you can carefully consider what logic belongs in the driver and
what logic belongs in the rules and filters.

4.1 Event Filters
Event filters specify the object classes and the attributes for which the DirXML engine processes
events. Separate event filters are specified for the subscriber and publisher channels. Event filters
only pass events occurring on objects whose base class matches one of those classes specified by the
filter. Event filters do not pass events occurring on objects that are a subordinate class of a class
specified in the filter unless the subordinate class is also specified.

NOTE: In eDirectoryTM, a base class is the object class that is used to create an entry. You must
specify that class in the filter, rather than a super class from which the base class inherits.

For example, if the User class is specified in the event filter with the Surname and Given Name
attributes, the DirXML engine passes on any changes to these attributes. However, if the entry's
Telephone Number attribute is modified, the DirXML engine drops this event because the
Telephone Number attribute is not in the event filter.

Event filters are configurable by the system administrator and must be configured to include the
following:

• Attributes required by the rules
• Attributes that are to be synchronized

The publisher channel in the DirXML driver should use the publisher filter to remove events that
contain classes and attributes that do not match the filter. DirXML provides methods for using the
channel filter:

• For Java methods, see the DriverFilter class (../api/com/novell/nds/dirxml/driver/
DriverFilter.html).

• For C++ methods, see Driver Filter Interface in XML Interfaces C++.

For the format of a filter, see <driver-filter> (page 180).

4.2 Transformation Rules
Rules help the DirXML engine transform an event from a channel input into a set of commands for
a channel output.

• For the subscriber channel, the input event comes from eDirectory and the output command
goes to the application.
Introduction to the Rules and Filters 103

../api/com/novell/nds/dirxml/driver/DriverFilter.html

104 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• For the publisher channel, the input event comes from application and the output command
goes to eDirectory.

Rules are configurable by the system administrator so that the rules can be customized to do
whatever an individual installation requires. Rules are processed completely within the DirXML
engine. As such, the driver writer should carefully consider what logic to put in the driver as
opposed to what logic to leave configurable via rules.

Some rules perform a well-defined role in the event-to-command transformation while others allow
for more general customization. All rules can be implemented using XSLT style sheets, but rules
that perform well-defined roles more commonly use an XML format which is DirXML-specific and
more easily describes the transformation needed.

In DirXML 1.1, a new feature called Rule chaining enables multiple rule objects to be chained
together to form the total rule processing for a rule step (e.g., Create Rule, Placement Rule, etc.).
This allows a stylesheet to supplement the operation of a simple rule without having to completely
replace the rule with a stylesheet.

Rules are chained together using the DirXML-NextTransformation attribute on the rule object. Any
number of rules may be chained; multiple simple rules and stylesheets may be freely mixed. There
may not be any loops in the chain, and any simple rules used must match the rule step. In other
words, if rules are being chained in the Create Rule step, any simple rules must use the simple
Create Rule syntax.

Rules that use DirXML-specific XML formats can usually be created and edited using ConsoleOne
snap-ins that guide the administrator in creating the rules so that the administrator does not have to
see the raw XML that encodes the rule. However, when an XSLT style sheet is used as a rule (either
for those rules that can only be implemented using XSLT or as a replacement for one of the more
common rules), the XSLT must be programmed manually.

Rules are stored in the XmlData attribute of DirXML-Rule and DirXML-Stylesheet objects. The
DirXML-Driver, DirXML-Subscriber, and DirXML-Publisher objects use the following attributes to
reference these rule objects.

Table 4-1 DirXML attributes for referencing rule objects

Object Attribute Rule

DirXML-Driver DirXML-MappingRule Schema mapping rules

DirXML-InputTransform Input transformation style sheet

DirXML-OutputTransform Output transformation style sheet

DirXML-Subscriber DirXML-EventTransformationRule Subscriber event transformation style sheet

DirXML-
CommandTransformationRule

Subscriber command transformation style
sheet

DirXML-MatchingRule Subscriber matching rules

DirXML-CreateRule Subscriber create rules

DirXML-PlacementRule Subscriber placement rules

DirXML-
CommandTransformationRule

Subscriber placement rules
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Rules contain either channel-independent transformations or channel-dependent transformations.

• Rules specified on the DirXML-Driver object specify channel-independent transformations.
• Rules specified on the DirXML-Subscriber object or the DirXML-Publisher object specify

channel-dependent transformations.

4.3 Channel-Independent Transformations
Channel-independent transformations are applied to all information being passed between the
DirXML engine and the application driver.

Examples of information that may need to be transformed include class names, attribute names, and
attribute value formats.

In addition if your driver wants to use an XML format other than the DirXML-specified format
(XDS), then the XML documents must be transformed between XDS and the driver-specific format
as they are passed between the DirXML engine and your driver.

The DirXML engine uses three types of channel-independent transformations:

• Schema Mapping Rules
• Input Transformation Style Sheet
• Output Transformation Style Sheet

4.3.1 Schema Mapping Rules
Schema mapping rules map class names and attribute names between the eDirectory schema and the
application schema. The schema mapping rules are configured on the DirXML-Driver object, are
applied to both subscriber and publisher channels, and are applied to command documents, event
documents, and response documents.

From a driver writer’s point of view, the significance of the schema mapping rules is that you do not
need to worry about eDirectory class names and attribute names. All class names and attribute
names in the documents received by your driver are the names from your supported application:

• Before an XDS document is passed to your driver, all names are mapped from the eDirectory
name space into the application name space.

• After your driver passes a document to the DirXML engine and the input transformations are
applied, but before any further processing takes place, all names are mapped from the
application name space to the eDirectory name space.

DirXML-Publisher DirXML-EventTransformationRule Publisher event transformation style sheet

DirXML-
CommandTransformationRule

Subscriber command transformation style
sheet

DirXML-MatchingRule Publisher matching rules

DirXML-CreateRule Publisher create rules

DirXML-PlacementRule Publisher placement rules

Object Attribute Rule
Introduction to the Rules and Filters 105

106 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NOTE: If a class name or attribute name does not appear in the schema mapping rules, that name
will not be mapped.

Schema mapping rules are configurable from ConsoleOne and should contain all the object classes
and attributes specified in the event filters and the rules.

For more detailed information about schema mapping rules, see Section 8.1, “Schema Mapping
Elements,” on page 203.

4.3.2 Input Transformation Style Sheet
The purpose of the input transformation is to perform any preliminary transformations necessary on
the XML documents passed to the DirXML engine from your driver. This transformation is always
implemented as an XSLT style sheet.Typically an input transformation style sheet will only be used
on an installation-specific basis. A common use for the input transformation is data mapping. For
example, suppose your application supplies telephone numbers in the following format:

 (nnn) nnn-nnnn

Suppose that the installation requires that telephone numbers in eDirectory have the following
format:

 nnn nnn nnnn

An input transformation style sheet can be used to transform the telephone number data from your
application’s format to the desired format.

NOTE: All schema names in the XML processed by the input transformation style sheet are in the
application’s name space.

An input transformation style sheet can transform an arbitrary XML format native to the target
application to the format expected by DirXML. However, this is discouraged because it makes it
harder for administrators to customize the transformation for installation-specific needs. The driver
should perform this transformation by calling the Novell XSLT processor directly.

For more detailed information about writing style sheets and using the Novell XSLT processor, see
“Style Sheets” on page 239.

4.3.3 Output Transformation Style Sheet
The purpose of the output transformation is to perform any final transformations necessary on the
XML documents passed to your driver from the DirXML engine. This transformation is always
implemented as an XSLT style sheet.

Typically, for data mapping purposes, the output transformation is the inverse of the input
transformation. See “Input Transformation Style Sheet” on page 106 for an example of data
mapping.

NOTE: All schema names in the XML processed by the output transformation style sheet are in the
application’s name space.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
An output transformation style sheet can transform the XML format provided by DirXML to an
arbitrary XML format native to the target application. However, this is discouraged because it makes
it harder for administrators to customize the transformation for installation-specific needs. The
driver should perform this transformation by calling the Novell XSLT processor directly.

For more detailed information about writing style sheets and using the Novell XSLT processor, see
“Style Sheets” on page 239.

4.4 Channel-Dependent Transformations
Channel-dependent transformations are applied to one channel, either the publisher or the
subscriber, but not both. For example, on the subscriber channel, the transformation rules are used to
match entries in eDirectory with corresponding entries in the application and to impose restrictions
on creating new entries in the application when a match is not found. On the publisher channel, the
transformation rules are used to match entries in the application with corresponding entries in
eDirectory and to impose restrictions on creating new entries in eDirectory when a match is not
found.

The DirXML engine uses four types of channel-dependent transformations:

• Matching Rules
• Create Rules
• Placement Rules
• Event Transformation Rules

Event transformation rules can be applied to any type of event. Three of these rules (matching,
create, and placement) apply only to add events. When an object is added to either eDirectory or the
application, the following questions must be answered:

1. Does a corresponding object already exist in the target?
2. If not, does the object have sufficient data to enable a successful create operation in the target?
3. If the object can be created, where should the object be placed in the target's hierarchy?

Matching rules answer question #1; create rules, question #2; and placement rules, question #3.

The DirXML engine transforms modify events to add events when the modify event does not
include data that associates the existing entry in the source with an existing entry in the target.

4.4.1 Matching Rules
Matching rules establish links between an existing entry in eDirectory and an existing entry in the
external application. The matching rules specify which class and attribute values must match for an
entry in eDirectory and an entry in the application to be marked as corresponding entries. If a match
is successful, an association between the two entries is created. If a match is not successful, the
create rules are used.

The DirXML engine uses an association to establish and maintain a correspondence between an
entry in eDirectory and an entry in the application. Once established, the DirXML engine uses the
association rather than the matching rules to determine the correspondence between two entries. An
association is a unique key that the driver supplies from the application that uniquely identifies the
entry. The DirXML engine stores this key in eDirectory. The driver's publisher must supply this key
Introduction to the Rules and Filters 107

108 NDK: Novel

novdocx (E
N

U
) 01 February 2006
with each event it publishes to eDirectory. Once the key is established for an entry, the driver's
subscriber receives this key for all commands coming from the DirXML engine.

The publisher and the subscriber can have their own matching rules, or they can share the same rule.
A matching rule can specify more than one rule. DirXML applies the rules in the order they are
listed in the file. DirXML defines three items for specifying matching criteria:

• Object classes. For example, the entry must belong to the User class.
• Attribute values. For example, the entry must have Surname, Given Name, and Telephone

Number attributes that match the target entry's values.
• Placement in the directory's hierarchy. For example, the entry must come from a specified

container or its subordinate containers.

Matching rules must be defined such that only a single match results from the specified criteria. In
practice, this means the matching criteria must be either a single unique attribute (such as the GUID
attribute) or a combination of attributes (such as Surname, Given Name, and Telephone Number).

Any attributes or classes specified in matching rules must also be included in the event filter (see
Section 4.1, “Event Filters,” on page 103).

A matching rule can be either

• An XML file stored in a DirXML-Rule object (for the syntax, see Section 8.2, “Matching Rule
Elements,” on page 206)

• An XSLT style sheet stored in a DirXML-Stylesheet object (for more information, see “Style
Sheets” on page 239)

4.4.2 Create Rules
The create rules are applied to add events when the matching rules fail to find a match. The create
rules specify the minimum set of data that an entry must have before it can be created in the target.
Create rules can also perform other modifications to the add event such as

• Supply default values for attributes
• Specify an object to use as a template for creating a new entry

They can also veto an add event if the add event fails the conditions imposed by the create rules. For
example, if the create rule requires the entry to have a telephone number and it doesn't have one, the
add event fails.

If the add event passes the criteria in the create rules, the placement rules are then applied.

Both the subscriber and the publisher can reference create rules. Create rules can be either

• An XML file stored in a DirXML-Rule object (for the syntax, see Section 8.3, “Create Rule
Elements,” on page 214)

• An XSLT style sheet stored in a DirXML-Stylesheet object (for more information, see “Style
Sheets” on page 239)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
4.4.3 Placement Rules
Placement rules specify the entry's name and determine where a new entry is placed in the
eDirectory tree or in the application. Because placement rules determine location, they also
determine the distinguished name of the entry.

Placement rules are applied to the add events that pass the criteria in the create rules.

Both the subscriber and the publisher can reference placement rules. Placement rules can be either

• An XML file stored in a DirXML-Rule object (for the syntax, see Section 8.4, “Placement Rule
Elements,” on page 222)

• An XSLT style sheet stored in a DirXML-Stylesheet object (for more information, see “Style
Sheets” on page 239)

4.4.4 Event Transformation Rules
An event transformation rule can apply just to the subscriber, just to the publisher, or both. Usually
the subscriber and the publisher reference different event transformation rules.

These rules perform preliminary transformations on events:

• When referenced by the subscriber, the rules apply to events sent by eDirectory to the DirXML
engine and are processed before any other event processing.

• When referenced by the publisher, the rules apply to events sent by the driver to the DirXML
engine and are processed after any input transformation style sheet and schema mapping rules
but before any other event processing.

Event transformation rules are always implemented using an XSLT style sheet. They are commonly
used for the following tasks:

• Custom event filtering.
• Changing event types, for example, transforming an object delete event to a modification event

that causes the object to be archived.
• Transforming events to custom commands.
• Generating additional events, for example, changing a delete event to a modify and a move.

For more information and an example, see Section 8.5, “Event Transformation Rules,” on page 233.

4.4.5 Command Transformation Rules
A command transformation rule can apply just to the subscriber, just to the publisher, or both.
Usually the subscriber and the publisher reference different command transformation rules.

These rules provide final processing on commands before the commands are sent to eDirectory or
the application:

• When referenced by the subscriber, these rules are executed directly before the Schema
Mapping Rule. Both the Schema Mapping Rule and the Output Transformation are executed
after the Command Transformation Rule on the Subscriber channel.

• When referenced by the publisher, these rules are executed after all other rules and are executed
directly before the DirXML engine applies the commands in the command document to
Introduction to the Rules and Filters 109

110 NDK: Novel

novdocx (E
N

U
) 01 February 2006
eDirectory. It is the "last chance" to modify a command before the command is applied to
eDirectory.

The Command Transformation Rule is always implemented using an XSLT stylesheet. Many
applications that had to be performed in the Event Transformation Rule in DirXML 1.0 can be more
easily performed in the Command Transformation Rule in DirXML 1.1. This is because all event-to-
command processing performed by the DirMXL Engine has already been performed. They are
commonly used for the following tasks:

• Changing the command type (for example, an object delete command might be transformed
into a modification that will cause the object to be archived).

• Blocking commands.
• Adding additional commands.
• Controlling the output of the DirXML Engine’s "merge" process.
• Generating additional events, for example, changing a delete event to a modify and a move.

The Command Transformation Rule is always implemented using an XSLT stylesheet. Many
applications that had to be performed in the Event Transformation Rule in DirXML 1.0 can be more
easily performed in the Command Transformation Rule in DirXML 1.1. This is because all event to
command processing performed by the DirMXL Engine has already been performed.

Note that the Command Transformation Rule did not exist in DirXML 1.0; the Command
Transformation Rule was added in DirXML 1.1.

4.5 Event Processing
The DirXML engine applies rules and event filters to events coming from eDirectory and from the
application. The order varies according to the channel.The following sections list the order of
application. The lists assume that the event passes all the rules. Events which fail are dropped.

4.5.1 Subscriber Channel
When an operation occurs in eDirectory that generates an add, move, delete, rename, or modify
event, the DirXML engine performs the following steps in the order listed.

1. Verifies that the event contains object classes and attributes allowed by the subscriber filter.
2. Applies the event transformation rules.
3. If the event is a modify event on an unassociated object, converts the event to an add event.
4. If the event is an add event, applies the following:

• Matching rules
• Create rules
• Placement rules

5. Applies the command transformation rules.
6. Applies the schema mapping rules.
7. Applies any output transformations.
8. Sends the commands to the driver.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Any of the rules can cause an event to be dropped.

• If event doesn't pass the filter, it is dropped.
• If the matching rules produce multiple matches for the entry, an error is logged and the event is

dropped.
• If the entry does not pass the criteria for a create rule, the event is dropped.
• If the entry does not pass the criteria for a placement rule, the event is dropped.

You need to analyze the dropped events to determine if the rules are producing the desired results or
if the rules need to be refined.

4.5.2 Publisher Channel
When an event occurs in the application, the publisher channel of the driver sends the engine an
XML document to process. The DirXML engine then performs the following steps before sending
the event to eDirectory.

1. Applies the input transformation rules.
2. Applies the schema mapping rules.
3. Applies the event transformation rules.
4. Applies the publisher event filter.
5. If the event is a modify event on an unassociated object, converts the event to an add event.
6. If the event is an add event, applies the following rules:

• Matching rules
• Create rules
• Placement rules

7. Applies the command transformation rule.
8. Sends the event to eDirectory.

Any of the rules can cause an event to be dropped.

• If event doesn't pass the filter, it is dropped
• If the matching rules produce multiple matches for the entry, an error is logged and the event is

dropped.
• If the entry does not pass the criteria for a create rule, the event is dropped.
• If the entry does not pass the criteria for a placement rule, the event is dropped.

You need to analyze the dropped events to determine if the rules are producing the desired results or
if the rules need to be refined.
Introduction to the Rules and Filters 111

112 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

5
novdocx (E

N
U

) 01 February 2006
5Novell exteNd Composer Driver

The Identity Manager SDK includes the Identity Manager driver for Novell exteNd Composer. This
driver can be used to create custom applications which interface with Identity Manager using
exteNd Composer.

This is recommended for developers who have experience using exteNd connectors and want to use
that experience to create drivers for Identity Manager.

Novell exteNd is a comprehensive suite for the rapid development of service-oriented Web
applications. With Novell exteNd 5.2 corporate application, developers can powerfully combine
identity, integration and portal services to securely deliver relevant business information, at the
appropriate time, to the right people. Novell exteNd Composer 5.2 can help you crate and deploy a
complete integration solution for your organization.

Using the Identity Manager Driver for Composer, composer action models can be written to
implement application specific logic. The Composer action model can connect to the target systems
and perform creates, deletes, modifies, and queries as specified by Identity Manager.

A Composer action model is built for each type of system, based on the requirements of that system.
The Identity manager driver for Composer can be configured with policies like any other driver.

The IDM Composer Driver:

• Receives XML documents from Composer and passes them to the IDM DirXML engine. The
engine then applies the policies as specified by the user.

• Receives XML documents from the IDM DirXML engine and passes them to composer.
• Maintains the publisher-side cache for guaranteed delivery.

The Composer Action Model:

• Provides support for all IDM command and event documents as specified in the NDS.dtd.
• Provides the association ID for synchronized objects.
• Provides status level and status type returns for each command or event received on the

subscriber channel.
• Responds to the schema discovery command from the IDM driver.
• Detects changes on target system and published them as XDS documents to the IDM driver.
• Responds to shutdown request from the IDM driver.

For more information on exteNd Composer, see the Novell exteNd Composer Documentation.
(http://www.novell.com/documentation/extend52/Docs/Start_Composer_Help.html)

5.1 Setting Up the exteNd Composer Driver
The following instructions guide you through setting up the Identity Manager Composer driver in
the exteNd interface, building the archive, and running it on your Identity Manager server.

After you are familiar with this process, you can use the skeleton driver as a template for your own
Composer projects.
Novell exteNd Composer Driver 113

http://www.novell.com/documentation/extend52/Docs/Start_Composer_Help.html

114 NDK: Novel

novdocx (E
N

U
) 01 February 2006
5.1.1 Preparing the Project
1 From composer, click File > Open Project.
2 Browse to the composerSkeletonDriver, which is included with this Kit, and is installed to /
ndk/dirxml/samples/ComposerIntegration/ComposerSkeletonDriver/
ComposerSkeletonDriver.spf.

3 Update the archive/deployment directory to match your directory structure, by:
• Right-clicking the ComposerSkeletonDriver in the Instance Pane and selecting properties.
• Selecting the deployment tab.
• Changing the Deployment Staging Directory setting to the path where your project is

located. For example, ndk/dirxml/samples/ComposerIntegration/
ComposerSkeletonDriver/staging.

5.1.2 Building the Project
1 With the project you modified in the previous step saved and open in Composer, click File/

Archive Project from the main menu.
2 In the Archive Project dialog, click Archive.
3 This builds the ComposerSkeletonDriver.jar file which is copied to the lib directory of your

Identity Manager server or remote loader in the next step.

5.1.3 Running the Project
1 Copy the following files to the lib directory in novell/remoteLoader or novell/nds,

depending on whether or not you are using the remote loader:
• /ndk/dirxml/samples/ComposerIntegration/ActionModel/depends/*
• /ndk/dirxml/samples/ComposerIntegration/driver/ComposerDriverShim.jar
• /ndk/dirxml/samples/composerintegration/actionModel/ComposerSkeletonDriver.jar

2 When you restart Identity Manager, you can now add a ComposerSkeletonDriver to your
environment using the iManager plug-in for IDM.

3 When you add a driver, you are asked to provide a driver set to contain the driver, then you are
asked for an initial configuration. Select the browse option, then select the /ndk/dirxml/
samples/composerintegration/actionModel/
ComposerSkeletonDriverConfig.xml file.
l Identity Manager (DirXML) Driver Kit

6
novdocx (E

N
U

) 01 February 2006
6Driver Installation

Driver installation must perform the following tasks:

• Copy the driver to the eDirectoryTM server
• Create the driver objects in the eDirectory tree
• Customize the driver for the environment

The following sections describe the details of these tasks. Once you have manually configured your
driver, you can export the configuration from the ConsoleOne® DirXML® snap-in and then ship this
file in your product. The administrator then needs instructions on importing this file in ConsoleOne
and either prompts or instructions on configuring the options that must be customized.

6.1 Copy the Driver
Since DirXML drivers can be installed on multiple platforms (NetWare, NT, Solaris, and Linux),
your installation program needs to handle all the platforms your driver supports.

• NetWare®. NLMs should be copied to the sys:system directory and jar files should be copied
to the lib directory.

• Win32. DLLs should be copied to the C:\Novell\nds directory and jar files to the
C:\Novell\nds\lib directory.

• Unix. The libcskeldrv.so should be copied to the /usr/lib/nds-modules directory and jar files
should be copied to the /usr/lib/dirxml/classes directory.

Before copying the driver to the eDirectory server, the installation program should verify that the
selected server is running eDirectory version 8.5 or later.

6.2 Create the Driver Objects
When DirXML is installed with eDirectory version 8.5, a DirXML-DriverSet object is created in the
eDirectory tree. When you manually install your driver on the eDirectory server, you need to create
the following objects:

• In the DirXML-DriverSet container object, create a DirXML-Driver object. Required attribute,
CN of the object.

• In the DirXML-Driver container, create a DirXML-Subscriber object, a DirXML-Publisher
object, a DirXML-Rule object for mapping, and optional style sheet objects. Required attribute
for the objects, CN of the object.

• In the DirXML-Subscriber container, create DirXML-Rule objects for placement, matching,
and create rules; an optional an object for event transformations. Required attribute for the
objects, CN of the object.

• In the DirXML-Publisher container, DirXML-Rule objects for placement, matching, and create
rules; an optional an object for event transformations. Required attribute for the objects, CN of
the object.
Driver Installation 115

116 NDK: Novel

novdocx (E
N

U
) 01 February 2006
In the DirXML-Driver object, you need to write values for the following attributes:

• DirXML-JavaModule or DirXML-NativeModule. These attributes supply the DirXML engine
with the name of the driver's executable module. A Java application uses the DirXML-
JavaModule attribute to specify the Java class that needs to be loaded, and a DLL or NLM
driver uses the DirXML-NativeModule to specify the library that needs to be loaded.

• Shim authentication attributes (DirXML-ShimAuthID, DirXML-ShimAuthPassword, and
DirXML-ShimAuthServer). These attributes allow the driver to authenticate to the external
application. The export file should prompt the user to enter values for these attributes.

• DirXML-DriverStartOption. This attribute determines when the driver starts: (1) automatically
when eDirectory is initialized, (2) manually when the administrator starts the driver from
ConsoleOne, or (3) never because the driver has been disabled.

• DirXML-ShimConfigInfo. This attribute holds the configuration options for the driver and the
shims. Depending upon the configuration options you supply, the export file may or may not
prompt the user for configuration details. If your configuration options are for optimizing the
performance of the driver, the installation program can just copy the file containing the default
values to this attribute. Otherwise, the export file should prompt the administrator for the
values that must be set and then copy the file to the attribute.

For the DirXML-Rule objects, prototype files need to be copied to the XmlData attribute. Chapter 8,
“Rule Reference,” on page 203 describes all the types of rules, filters, and style sheets that are
possible. You need to create the generic rules that are appropriate for the publisher and subscriber,
create rule objects for them, and associate them with publisher or subscriber through the appropriate
attribute (DirXML-CreateRule, DirXML-DriverFilter, DirXML-MatchingRule, and DirXML-
PlacementRule).

Since the rules and filters will require input from the administrator who knows what data needs to be
synchronized between the two database, your driver needs to come with instructions on how to
configure these items from ConsoleOne. See the NDS eDirectory Administration Guide manual for a
prototype of sample instructions.

6.3 Exporting the Configuration
Once you have manually configured the driver and have it running, use the DirXML snap-in to
ConsoleOne to export the configuration. When this file is imported on a new system, it creates all
the objects required by the driver and configures them with the appropriate options, rules, and style
sheets.

6.4 Set Up the Server Environment
The system administrator needs to set up filtered replicas. The server that is going to run DirXML
drivers should hold a filtered replica of every partition in the eDirectory tree. These filtered replicas
should be configured to contain the data for the attributes and classes that eDirectory will share with
the application.
l Identity Manager (DirXML) Driver Kit

7
novdocx (E

N
U

) 01 February 2006
7eDirectory DTD Commands and
Events

The eDirectoryTM document type definition file (nds.dtd) defines the schema of the XML
documents that the DirXML® engine can process. XML documents that do not conform to this
schema generate errors.

The nds.dtd file defines the following:

• Input and output commands and events (such as add, delete, modify, and rename) that can be
performed on entries and the data that must be included with each. For more information, see
Section 7.2, “Input and Output Elements,” on page 122.

• Driver initialization operations (such as authentication information, driver filter, configuration
options, and state) for the driver shim, publisher shim, and subscriber shim and the data that
these operations require. For more information, see Section 7.4, “Other Elements,” on
page 167.

• Schema operations for defining class and attribute definitions. For more information, see
<schema-def> (page 162).

• Rules for schema mapping, matching, creation, and placement. For more information, see
“Rule Reference” on page 203.

Remember the following when reading a DTD file.

NOTE: Generated DTD reference documentation is included with the Javadoc (../ref/index.html).

7.1 Top Level Elements
All XML documents sent to the DirXML engine or the external application must start with a top-
level element. Two of these elements (<nds> and <driver-config>) are described in this chapter:

• <nds> (page 119)
• <driver-config> (page 121)

Marker Meaning

? 0 or 1 of these can be included

+ 1 or more of these must be included

* 0 or more of these can be included

CDATA Character data

PCDATA Parsed character data

<! Beginning of an element, entity, or attribute definition

> End of an element, entity, or attribute definition
eDirectory DTD Commands and Events 117

../ref/index.html

118 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The other top-level elements are rule elements, and they are described in “Rule Reference” on
page 203.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<nds>
Specifies the top level element that is used in all documents sent and returned by the DirXML
interface (for a description of these interfaces, see “Writing a DirXML Driver” on page 33).

Description
All XML documents sent as a request operation or returned as a response to that operation must use
<nds> as the top level element in the document. In addition, these documents may contain exactly
one <input> element or exactly one <output> element, not both. The <source> element is optional.

Definition
<!ELEMENT nds (source?, (input | output))>
<!ATTLIST nds
 ndsversion CDATA #REQUIRED
 dtdversion CDATA #REQUIRED >

<!ELEMENT source (product?, contact?)>

<!ELEMENT product (#PCDATA)>
<!ATTLIST product
 version CDATA #IMPLIED
 asn1id CDATA #IMPLIED>

<!ELEMENT contact (#PCDATA)>

Attributes of <nds>
ndsversion

Specifies the current version of eDirectory. It must be set to 8.5 or higher.

dtdversion
Specifies the current version of DirXML. It must be set to 1.0.

Elements
<source>

Specifies the source that created the XML document.

<input>
Specifies the operations to perform. The document can contain only one <input> element, and
if it contains an <input> element, it cannot contain an <output> element.

<output>
Specifies the results of an operation. The document can contain only one <output> element,
and if it contains an <output> element, it cannot contain an <input> element.
eDirectory DTD Commands and Events 119

120 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Parent
None

Example
The DirXML engine sends the following:

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product asn1id="2 16 840 1 113719 1 x" version="1.0b3">DirXML</
product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <modify class-name="User" event-id="0" src-
dn="\ATREE\Users\Julia"
 src-entry-id="33967">
 <association state="associated">{B43E7155-CDF9-d311-9846-
0008C76B
 16C2}</association>
 <modify-attr attr-name="Surname">
 <add-value>
 <value type="string">Gulia</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

The driver returns the following

<nds dtdversion="1.0" ndsversion="8.5">
 <source>
 <product version="1.0b3">Some Application Driver</product>
 <contact>Nobody in particular</contact>
 </source>
 <output>
 <status event-id="0" level="success"/>
 </output>
</nds>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<driver-config>
Specifies driver-specific configuration options.

Description
The <driver-config> element is a top level element. The information specified in this XML
document is stored in the attribute of the DirXML-Driver object in eDirectory.

In ConsoleOne, each driver defined configuration element is displayed as an edit control which
allows the system administrator to edit the content of the element. ConsoleOne uses the display-
name attribute as the name for the element in the edit control. If no display-name is provided, the
element tag name is used.

If the options contain a <config-object> element, ConsoleOne displays each <config-object>
element as a single valued distinguished name control which allows the system administrator to
select a distinguished name for the dest-dn attribute of the enclosed <query> element.

Definition
<!ELEMENT driver-config (driver-options?,
 subscriber-options?,
 publisher-options?) >
<!ATTLIST driver-config
 name CDATA #IMPLIED>

Attributes
name

Specifies the name of the DirXML driver

Elements
<driver-options>

Specifies configuration options for the DriverShim.

<subscriber-options>
Specifies configuration options for the SubscriptionShim.

<publisher-options>
Specifies configuration options for the PublisherShim.

Parent
None
eDirectory DTD Commands and Events 121

122 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Example
<driver-config name="Netscape DirXML Driver">
 <driver-options>
 <display-method display-name="Debug Output (0-none,
 1-Window, 2-DSTrace)">1</display-method>
 </driver-options>
 <subscriber-options>
 <config-object display-name="Super driver
 configuration data">
 <query dest-dn="novell/Driver Set/Super Driver/
 Config Object" scope="entry"
 event-id="config1">
 <read-attr attr-name="Some Attribute"/>
 <read-attr attr-name="XmlData" type="xml"/>
 </query>
 </config-object>
 </subscriber-options>
 <publisher-options>
 <pollRate display-name="Poll rate in seconds">5</
 pollRate>
 <changeLogSuffix display-name="Netscape changelog
 suffix">cn=changelog</changeLogSuffix>
 <changeLogBegin display-name="Starting changelog
 (1-First, 2-New, 3-Continue)">2
 </changeLogBegin>
 </publisher-options>
</driver-config>

7.2 Input and Output Elements
The input and output elements control the contents of the XML documents that are sent between
eDirectory and the external application. They are child elements to the <nds> element.

DirXML is designed to handle entry management. As such, it provides commands which use the
eDirectory verbs that list, read, search, add, remove, modify, and move entries. Partition and replica
management are not currently available through DirXML.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<input>
Specifies an entry operation to be performed by the receiver.

Description
An <input> element is sent in response to an event that occurs in eDirectory or the external
application such as modifications to an entry's attributes, the creation of a new entry, or the deletion
of an entry.

An <input> element can contain one or more of the commands in the list. Some commands are used
only by the driver or the engine:

• The DirXML driver sends the association commands (add, modify, and remove) to the
DirXML engine, but the engine never sends these commands to the DirXML driver.

• The DirXML engine sends the init-params command to the driver when it is first started by the
DirXML engine.

Although most input documents will contain only one event or command, style sheets can convert
the one event into multiple events. Your driver needs to loop through the document and discover all
events, rather than assuming that it needs to find only one.

Definition
<!ELEMENT input (add|
 modify|
 delete|
 rename|
 move|
 query|
 query-schema|
 add-association|
 modify-association|
 remove-association|
 init-params|
 status)* >

Elements
<add>

Specifies an input that creates a new entry in the receiving application.

<modify>
Specifies an input that modifies an entry's attributes.

<delete>
Specifies an input that deletes an entry in the receiving application.

<rename>
Specifies an input that renames the entry in the receiving application.
eDirectory DTD Commands and Events 123

124 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<move>
Specifies an input that moves an entry from one container to another.

<query>
Specifies an input that retrieves additional information about an entry from the receiving
application.

<query-schema>
Specifies an input which returns an XML document that describes the schema of the receiving
application.

<add-association>
Specifies an input that adds an association value to the specified entry in the eDirectory
database.

<modify-association>
Specifies an input that modifies the association of the specified entry in the eDirectory
database.

<remove-association>
Specifies an input that removes an association from the specified entry in the eDirectory
database.

<init-params>
Specifies an input that contains initialization parameters for the DirXML driver.

<status>
Specifies an input that contains the status of the driver.

Parent
<nds> (page 119)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<output>
Specifies a response to an entry operation.

Description
An <output> element is sent in response to an input command. A status command must always be
returned in response to an <input> element.

An <output> element can contain one or more of the commands in the list. The association
commands (add, modify, and remove) are only sent to eDirectory. The DirXML driver sends the
init-params command to the DirXML engine when it needs to store state information.

Definition
<!ELEMENT output (status|
 add-association|
 modify-association|
 remove-association|
 instance|
 schema-def|
 init-params)* >

Elements
<status>

Specifies an output that is the response to an input.

<add-association>
Specifies an output that adds an association value to the specified entry in the eDirectory
database.

<modify-association>
Specifies an output that modifies the association of the specified entry in the eDirectory
database.

<remove-association>
Specifies an output that removes an association from the specified entry in the eDirectory
database.

<instance>
Specifies an output that contains the requested information about an entry.

<schema-def>
Specifies an output that contains the class and attribute definitions in the eDirectory schema or
the external application's schema.

<init-params>
Specifies an output that contains the DirXML driver's state information.
eDirectory DTD Commands and Events 125

126 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Parent
<nds> (page 119)

7.3 Command and Event Elements
This section describes the elements that are used to define DirXML operations. These are the
elements that define the request and reply documents that are exchanged between the DirXML
engine and the DirXML driver.

When the DirXML engine sends a document with an <input> element to the driver, the element is a
command. When the driver sends a document with an <input> element to the engine, the element is
an event. Essentially, an event and a command have the same syntax, but there are subtle
differences. The following elements have command and event sections that describe these
differences.

When the driver sends an event to the engine, the driver is informing the engine that something
occurred in the application. The engine determines, based on the configurable rules, what
commands, if any, to send to eDirectory.

When the engine sends a command to the driver, the engine is informing the driver that something
occurred in eDirectory. The engine has already processed the eDirectory event as input, applied the
appropriate rules, determined the changes that need to be made in the application, and transformed
these changes into commands.

The following table describes some of the common attributes that are found in the command and
event elements.

Table 7-1

Attributes Description

association-ref The reference key which uniquely identifies an entry in the database. This is assigned
to attribute values when the value is a distinguished name and that distinguished
name has formed an association. It is also assigned to structured attributes when one
of the components is a distinguished name and that distinguished name has formed
an association.

class-name The base class which the entry belongs to. The class name is mapped in the mapping
rules so that DirXML is given the eDirectory name and the external application is given
the class name in its name space.

dest-dn The distinguished name of the entry in the destination database.

dest-entry-id The entry ID in the destination database.

event-id A number which is unique to the XML document and which identifies the command.

src-dn The distinguished name of the entry in the source database (the database that is the
originator of the XML document).

src-entry-id The entry ID in the source database (used internally by DirXML).
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<add>
Specifies an input that creates a new entry in the receiver.

Description
The <add> element is an input command or an input event. It is used for following tasks:

• The DirXML engine sends an add command to the subscriber shim to request that the external
application add an entry.

• The publisher shim sends an add event as notification that an entry has been added in the
external application. When the add event is used for event notification, it must also contain an
association element.

Definition
<!ELEMENT add (association?, add-attr*, password?)>
<!ATTLIST add
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 class-name CDATA #REQUIRED
 template-dn CDATA #IMPLIED
 event-id CDATA #IMPLIED>
<!ELEMENT add-attr (value+)>
<!ATTLIST add-attr
 attr-name CDATA #REQUIRED>
<!ELEMENT password (#PCDATA)>

Attributes
src-dn

Specifies the distinguished name of the entry to add, in the name space of the sender. When the
DirXML engine sends the <add> element, the DirXML driver should copy the src-dn attribute
to the dest-dn attribute of an <add-association> element.

src-entry-id
Specifies the entry ID of the entry that generated the add event or command. It is specified in
the name space of the sender. When the DirXML engine sends the <add> element, the DirXML
driver should copy the src-entry-id attribute to the dest-entry-id attribute of an <add-
association> element.

dest-dn
Specifies the distinguished name of the entry in the name space of the receiver. For event
notifications, it should be left empty. For commands, it is filled in by the placement rules.

dest-entry-id
Specifies the entry ID of the entry in the name space of the receiver. Used internally by the
DirXML engine and should be ignored by the driver.
eDirectory DTD Commands and Events 127

128 NDK: Novel

novdocx (E
N

U
) 01 February 2006
class-name
Specifies the base class of the entry being added.

template-dn
Specifies the distinguished name, in the receiver's name space, of the template to use when
creating the entry.

event-id
Specifies an identifier used to identify a particular instance of the command or event.

Elements
<association>

Specifies the unique key of the entry in the external application.

<add-attr>
Specifies the attributes to add with the entry.

<password>
Specifies the initial password for the entry.

Request Format

Command

The DirXML engine sends the following attributes and elements in the add command to the
subscriber shim:

• src-dn
• dest-dn (if generated by the placement rules)
• class-name
• event-id
• template-dn which specifies the distinguished name, in the receiver's name space, of the

template to use when creating the entry
• 0 or more <add-attr> elements
• If 1 or more <add-attr> elements, 1 or more <value> elements as children of the <add-attr>

element
• <password> (optional, initial password for the entry)

Event

The publisher shim sends the following attributes in the add command to the DirXML engine:

• src-dn
• class-name
• event-id (optional)
• 0 or more <add-attr> elements
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• If 1 or more <add-attr> elements, 1 or more <value> elements for each <add-attr> element
• <association>

Reply Format

Command

The subscriber shim must return a status command, and if the add succeeded, the subscriber shim
must return an add-association command with the key that uniquely identifies the new entry.

If the entry does not contain values for all the attributes defined in the create rules, DirXML discards
the add command for the entry. When a modify command is received for this entry, DirXML queries
eDirectory for the missing attributes. If all the attributes now have values, DirXML changes the
modify into an add command.

Event

The DirXML engine returns a status command.

If the add event does not contain values for all the attributes defined in the create rules, the add event
fails. When a modify event is received for this entry, the DirXML engine queries the publisher shim
for the missing attributes. The add event succeeds if the required attributes now have values.

Parent
<input> (page 123)

Example
The following example shows an add event from a DirXML driver.

<add class-name="User" src-dn="\Sam">
 <association>1012</association>
 <add-attr attr-name="cn">
 <value>Sam</value>
 </add-attr>
 <add-attr attr-name="Surname">
 <value>Jones</value>
 </add-attr>
 <add-attr attr-name="Given Name">
 <value>Sam</value>
 </add-attr>
 <add-attr attr-name="Telephone Number">
 <value>555-1212</value>
 </add-attr>
</add>
eDirectory DTD Commands and Events 129

130 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<add-association>
Specifies an input or output that adds an association value to the specified entry in the eDirectory
database.

Description
When the DirXML engine sends the driver an add command and the driver succeeds with the add,
the driver sends back a success status with an <add-association> element.

The <add-association> element is used to return the unique key that identifies an entry in the
external application. The DirXML engine never sends an <add-association> element to the external
application. The DirXML driver can send this <element> to the DirXML engine either as an input or
output.

Definition
<!ELEMENT add-association (#PCDATA) >
<!ATTLIST add-association
 dest-dn CDATA #REQUIRED
 dest-entry-id CDATA #IMPLIED
 event-id CDATA #IMPLIED>

Attributes
dest-dn

Specifies the distinguished name of the entry receiving the association. It should be set to the
src-dn of the <add> command.

dest-entry-id
Specifies ID of the entry receiving the association. It should be set to the src-entry-id of the
<add> command.

event-id
Specifies an identifier used to identify a particular instance of the command or event. It should
be set to the event-id of the <add> command.

Request Format

Event

The DirXML driver includes the following with this event:

• dest-dn which is the src-dn of the original add command
• dest-entry-id which is the src-entry-id of the original add command (optional, but encouraged)
• event-id which is the event-id of the original add command
• PCDATA which contains the foreign key that uniquely identifies this entry.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Reply Format
If the event is an input event, the DirXML engine returns a status command indicating whether the
event was processed successfully.

Parent
<input> (page 123)
<output> (page 125)

Example
The following example shows an <add-association> element as an output from the driver.

<add-association dest-dn="\Users\Samuel" dest-entry-
id="33974">{BC3E7155-CDF9-d311-9846-0008C76B16C2}</add-association>
eDirectory DTD Commands and Events 131

132 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<delete>
Specifies an input that deletes an entry in the target application.

Description
The delete command is an input command or event. It is used for the following tasks:

• The DirXML engine sends the delete command to the subscriber shim to request that the
external application delete an entry. The delete command must contain an association element.

• The publisher shim sends the delete command as an event notification that an entry has been
deleted in the external application. When the delete command is used for event notification, it
must contain an association element.

Definition
<!ELEMENT delete (association?)>
<!ATTLIST delete
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 class-name CDATA #IMPLIED
 event-id CDATA #IMPLIED>

Attributes
src-dn

Specifies the distinguished name of the entry to delete, in the name space of the sender.

src-entry-id
Specifies the entry ID of the entry that is being deleted. It is used internally by the DirXML
engine and should be ignored by the driver.

dest-dn
Specifies the distinguished name of the entry in the name space of the receiver. For events, the
driver should leave it empty.

dest-entry-id
Specifies the entry ID for the entry in the name space of the receiver. For events, the driver
should leave it empty.

class-name
Specifies the base class of the entry being deleted.

event-id
Specifies an identifier used to identify a particular instance of the command or event.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Elements
<association>

Specifies the unique identifier for the entry in the external application.

Request Format

Command

The DirXML engine sends the following information to the subscriber shim with the delete
command:

• <association>
• src-dn
• event-id

Event

The publisher shim sends the following information to the DirXML engine with a delete event:

• <association>
• src-dn (optional, but encouraged)
• class-name (optional, but encouraged)
• event-id (optional)

Reply Format
The receiving application should respond to a <delete> command or event with a <status> element
indicating whether the <delete> was processed successfully.

Parent
<input> (page 123)

Example
The following example shows a <delete> element as an input from the driver.

<delete class-name="User" src-dn="\Sam">
 <association>1012</association>
</delete>
eDirectory DTD Commands and Events 133

134 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<init-params>
Specifies an input or output that contains the initialization parameters.

Description
As input, the DirXML engine uses the <init-params> element to send initialization parameters to the
DriverShim, PublicationShim, and SubscriptionShim init routines. As a developer of a DirXML
driver, you determine which of the optional configuration elements your driver requires. All drivers
require a <driver-filter> element to be functional.

The DirXML driver uses the <init-params> element to send state information to the DirXML
engine. The driver can include it in any <input> or <output> element.

Definition
<!ELEMENT init-params (authentication-info?,
 driver-filter?,
 driver-options?,
 subscriber-options?,
 publisher-options?,
 driver-state?,
 subscriber-state?,
 publisher-state?)>

Elements
<authentication-info>

Specifies the information required to make a connection and log in to the external application.

<driver-filter>
Specifies which object classes and the attributes that the subscriber shim and publisher shim
can synchronize with eDirectory.

<driver-options>
Specifies any configuration options which the driver shim requires during initialization and
which the system administrator needs to supply values for.

<subscriber-options>
Specifies any configuration options which the subscription shim requires during initialization
and which the system administrator needs to supply values for.

<publisher-options>
Specifies any configuration options which the publisher shim requires during initialization and
which the system administrator needs to supply values for.

<driver-state>
Returns the driver state information that the DirXML driver saved when it was shut down.

<subscriber-state>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Returns the subscriber state information that the DirXML driver saved when it was shut down.

<publisher-state>
Returns the publisher state information that the DirXML driver saved when it was shut down.

Request Format

Command

The command may include any of the following optional elements:

• <authentication-info> which is sent to the DriverShim, PublicationShim, and SubscriptionShim
• <driver-filter> which is sent to the PublicationShim and the SubscriptionShim
• <driver-options> which is sent to the DriverShim init routine
• <subscriber-options> which is sent to the SubscriptionShim init routine
• <publisher-options> which is sent to the PublicationShim init routine
• <driver-state> which is sent to the DriverShim init routine
• <subscriber-state> which is sent to the SubscriptionShim init routine
• <publisher-state> which is sent to the PublicationShim init routine

Reply Format
The DriverShim, PublicationShim, and SubscriptionShim return a <status> element indicating
whether the command was processed successfully.

The DirXML driver can also send with any <output> element an <init-params> element that
contains <driver-state>, <publisher-state>, and <subscriber-state> elements.

Parent
<input> (page 123)
<output> (page 125)

Example
The following example shows what is sent as an input to the DriverShim, SubscriptionShim, and
PublisherShim init methods as well as what is sent to the DriverShim getSchema method.

<!-- for DriverShim.init() -->
<init-params>
 <authentication-info>
 <server>localhost</server>
 <user>Fred</user>
 <password>foobar</password>
 </authentication-info>
 <driver-options>
 <!-- some driver defined driver options -->
 </driver-options>
 <driver-state>
eDirectory DTD Commands and Events 135

136 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <!-- some driver defined driver state -->
 </driver-state>
</init-params>

<!-- for SubscriptionShim.init() -->
<init-params>
 <authentication-info>
 <server>localhost</server>
 <user>Fred</user>
 <password>foobar</password>
 </authentication-info>
 <driver-filter type="subscriber">
 <allow-class class-name="User">
 <allow-attr attr-name="Telephone Number"/>
 <allow-attr attr-name="CN"/>
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Description"/>
 <allow-attr attr-name="Title"/>

 <allow-attr attr-name="Postal Address"/>
 <allow-attr attr-name="GUID"/>
 <allow-attr attr-name="Full Name"/>
 </allow-class>
 <allow-class class-name="Organizational Unit">
 <allow-attr attr-name="OU"/>
 </allow-class>
 <allow-class class-name="Organizational">
 <allow-attr attr-name="O"/>
 </allow-class>
 </driver-filter>
 <subscriber-options>
 <!-- some driver defined subscriber options -->
 </subscriber-options>
 <subscriber-state>
 <!-- some driver defined subscriber state -->
 </subscriber-state>
</init-params>

<!-- for PublicationShim.init() -->
<init-params>
 <authentication-info>
 <server>localhost</server>
 <user>Fred</user>
 <password>foobar</password>
 </authentication-info>
 <driver-filter type="publisher">
 <allow-class class-name="User">
 <allow-attr attr-name="Telephone Number"/>
 <allow-attr attr-name="CN"/>
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Description"/>
 <allow-attr attr-name="Title"/>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <allow-attr attr-name="Postal Address"/>
 <allow-attr attr-name="GUID"/>
 <allow-attr attr-name="Full Name"/>
 </allow-class>
 <allow-class class-name="Organizational Unit">
 <allow-attr attr-name="OU"/>
 </allow-class>
 <allow-class class-name="Organizational">
 <allow-attr attr-name="O"/>
 </allow-class>
 </driver-filter>
 <publisher-options>
 <!-- some driver defined publisher options -->
 </publisher-options>
 <publisher-state>
 <!-- some driver defined publisher state -->
 </publisher-state>
</init-params>

<!-- for DriverShim.getSchema() -->
<init-params>
 <authentication-info>
 <server>localhost</server>
 <user>Fred</user>
 <password>foobar</password>
 </authentication-info>
 <driver-filter type="subscriber">
 <allow-class class-name="User">
 <allow-attr attr-name="Telephone Number"/>
 <allow-attr attr-name="CN"/>
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Description"/>
 <allow-attr attr-name="Title"/>
 <allow-attr attr-name="Postal Address"/>
 <allow-attr attr-name="GUID"/>
 <allow-attr attr-name="Full Name"/>
 </allow-class>
 <allow-class class-name="Organizational Unit">
 <allow-attr attr-name="OU"/>
 </allow-class>
 <allow-class class-name="Organizational">
 <allow-attr attr-name="O"/>
 </allow-class>
 </driver-filter>
 <driver-filter type="publisher">
 <allow-class class-name="User">
 <allow-attr attr-name="Telephone Number"/>
 <allow-attr attr-name="CN"/>
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Description"/>
 <allow-attr attr-name="Title"/>
 <allow-attr attr-name="Postal Address"/>
eDirectory DTD Commands and Events 137

138 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <allow-attr attr-name="GUID"/>
 <allow-attr attr-name="Full Name"/>
 </allow-class>
 <allow-class class-name="Organizational Unit">
 <allow-attr attr-name="OU"/>
 </allow-class>
 <allow-class class-name="Organizational">
 <allow-attr attr-name="O"/>
 </allow-class>
 </driver-filter>
 <driver-options>
 <!-- some driver defined driver options -->
 </driver-options>
 <subscriber-options>
 <!-- some driver defined subscriber options -->
 </subscriber-options>
 <publisher-options>
 <!-- some driver defined publisher options -->
 </publisher-options>
 <driver-state>
 <!-- some driver defined driver state -->
 </driver-state>
 <subscriber-state>
 <!-- some driver defined subscriber state -->
 </subscriber-state>
 <publisher-state>
 <!-- some driver defined publisher state -->
 </publisher-state>
</init-params>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<instance>
Specifies an output that contains the requested information about an entry.

Description
The <instance> element is an output that is sent with the status command as a reply to a query
command.

An <instance> element is returned for each entry that matches the search filter of the query.

Definition
<!ELEMENT instance (association?, parent?, attr*)>
<!ATTLIST instance
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 class-name CDATA #REQUIRED
 event-id CDATA #IMPLIED>

Attributes
src-dn

Specifies the distinguished name of the entry being returned in the name space of the sender.

src-entry-id
Specifies the entry ID of the entry being returned in the name space of the sender. It should be
ignored by the driver.

class-name
Specifies the base class of the entry being returned.

event-id
Specifies the event-id of the query, if the query contained an <event-id> element.

Elements
<association>

Specifies the unique identifier for the entry being returned.

<parent>
Specifies the parent container of the entry, if requested by the query.

<attr>
Specifies attributes and values, if the query requested them
eDirectory DTD Commands and Events 139

140 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Reply Format
When the DirXML driver returns an <instance> element, the element must contain an <association>
element.

When the DirXML engine returns an <instance> element, the element contains an <association>
element if one has been formed for the entry.

Parent
<output> (page 125)

Example
The following example illustrates an <instance> element.

<instance class-name="User" src-dn="\Users\Samuel">
 <association>1012</association>
 <attr attr-name="Surname">
 <value>Jones</value>
 </attr>
 <attr attr-name="cn">
 <value>Samuel</value>
 </attr>
 <attr attr-name="Given Name">
 <value>Samuel</value>
 </attr>
 <attr attr-name="Telephone Number">
 <value>555-1212</value>
 <value>555-1764</value>
 </attr>
</instance>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<modify>
Specifies an input that modifies an entry's attributes.

Description
The <modify> element is an input command or event. It is used for the following tasks:

• The DirXML engine sends a modify command to the subscriber shim to request that the
external application modify an entry. The modify command must contain an association
element.

• The publisher shim sends a modify event as notification that an entry has been modified in the
external application. When the <modify> element is used for event notification, it must contain
an <association> element.

Definition
<!ELEMENT modify (association?, modify-attr+)>
<!ATTLIST modify
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 class-name CDATA #IMPLIED
 event-id CDATA #IMPLIED>

Attributes
src-dn

Specifies the distinguished name of the entry to modify in the name space of the sender.

src-entry-id
Specifies the entry ID in the name space of the sender. It is used internally by the DirXML
engine and should be ignored by the driver.

dest-dn
Specifies the distinguished name of the entry in the name space of the receiver. It is used
internally by the DirXML engine and should be ignored by the driver.

dest-entry-id
Specifies the entry ID of the entry in the name space of the receiver. It is used internally by the
DirXML engine and should be ignored by the driver.

class-name
Specifies the base class of the entry being modified. This attribute is required for modify
events.

event-id
Specifies an identifier used to identify a particular instance of the command or event.
eDirectory DTD Commands and Events 141

142 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Elements
<association>

Specifies the unique identifier for the entry in the external application. This element is required
for modify events.

<modify-attr>
Specifies the attributes to modify.

Request Format

Command

The DirXML engine sends the following information with a modify command to the subscriber
shim:

• src-dn
• class-name
• event-id
• <association>
• <modify-attr> (1 or more)

• For <remove-value>, 1 or more <value>
• For <add-value>, 1 or more <value>
• For <remove-all-values>, no values

Event

The publisher shim sends the following information with a modify event to the DirXML engine:

• src-dn
• class-name (required because a modify can turn into an add)
• event-id (optional)
• <association>
• 1 or more <modify-attr> elements

• For <add-value>, 1 or more <value> elements
• For <remove-value,> 1 or more <value> elements
• For <remove-all-values>, no values

Reply Format
The receiving application should respond to a modify command or event with a status command
indicating whether the modify was processed successfully.

Parent
<input> (page 123)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Example
The following example illustrates a <modify> element.

<modify class-name="User" src-dn="\Sam">
 <association>1012</association>
 <modify-attr attr-name="Given Name">
 <remove-all-values/>
 <add-value>
 <value>Samuel</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="Telephone Number">
 <remove-value>
 <value>555-1212</value>
 </remove-value>
 <add-value>
 <value>555-1764</value>
 <value>555-1765</value>
 </add-value>
 </modify-attr>
</modify>
eDirectory DTD Commands and Events 143

144 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<modify-association>
Specifies an input or output that modifies the association of the specified entry.

Description
The modify-association event is used to notify the DirXML engine that the entry's unique key in the
external application has been modified. The DirXML engine never sends a modify-association
command to the external application. The DirXML driver can send this event to the DirXML engine
either as an input or output event.

The DirXML driver should send this event whenever a foreign key in the external application
changes for an entry that passes the event filter for either the subscriber shim or the publisher shim.
For example, if the foreign key is the distinguished name of the entry and the entry's dn changes, the
driver sends both a rename event and a modify-association event.

Definition
<!ELEMENT modify-association (association, association) >
<!ATTLIST modify-association
 event-id CDATA #IMPLIED>

Attributes
event-id

Specifies an identifier used to identify a particular instance of the command or event.

Elements
<association>

Specifies the old association value.

<association>
Specifies the new association value.

Request Format

Event

The DirXML driver must include the following with this event:

• <association> with the old key
• <association> with the new key
• event-id (optional)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Reply Format
If the event is an input event, the DirXML engine returns a status command indicating whether the
event was processed successfully.

Parent
<input> (page 123)
<output> (page 125)

Example
The following example shows a <modify-association> element sent by a driver.

<modify-association>
 <association>{BC3E7155-CDF9-d311-9846-0008C76B16C2}</association>
 <association>{CD3F7155-DE09-e311-9846-0008D76C16D2}</association>
</modify-association>
eDirectory DTD Commands and Events 145

146 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<modify-password>
Modifies an attribute password. Added in DirXML 1.1.

Description
<modify-password> is used:

• As an event notification from the PublicationShim to DirXML that on object password was
modified in the application. When used as a notification, an <association> is required.

• As a command from DirXML to the SubsciptionShim to modify an object password in the
application. When used as a command, an <association> is required and is the unique key of
the object to modify.

When the target is NDS, and <old-password> is specified, the modifyPassword API is used to
modify the password. If not specified, the GenerateKeyPair API is used. Note that using
GenerateKeyPair may invalidate authentication credentials for any existing session authenticated as
the target object.

When the target is the application, a driver may or may not implement this functionality, depending
on the applicability to the application.

A response to <modify-password> should be a <status> indicating whether or not the <modify-
password> was processed successfully.

Note that if the old password is not provided to change the password the DirXML driver must have
supervisor rights to the object.

Definition
<!ELEMENT modify-password (association ?,
 old-password ?,
 password)>
<!ATTLIST modify-attr
 src-dn CDATA #IMPLIED>
 src-entry CDATA #IMPLIED>
 dest-dn CDATA #IMPLIED>
 dest-entry CDATA #IMPLIED>
 class-name CDATA #IMPLIED>
 event-id CDATA #IMPLIED>
 timestamp CDATA #IMPLIED>

<!ELEMENT old-password #PCDATA>

Attributes
src-dn

The distinguished name of source object that generated the event in the namespace of the
sender.

src-entry-id
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The entry id of source object that generated the event in the namespace of the sender.
(Reserved. Should be ignored by the driver.)

dest-dn
The distinguished name of the target object in the namespace of the receiver.

dest-entry-id
The entry id of the target object in the namespace of the receiver. (Reserved. Should be ignored
by the driver.)

class-name
Required when used as a notification. The name of the base class of the object. The class name
is mapped between the application and NDS name spaces by the schema mapping rule so that
DirXML will see the name in the NDS namespace and a driver will see the name in the
application name space.

event-id
An identifier used to tag the results of an event or command.

timestamp
(Reserved. Should be ignored by the driver.)

Elements
<old-password>

Specifies the current password.

Parent
<input> (page 123)
eDirectory DTD Commands and Events 147

148 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<move>
Specifies an input that moves an entry from one container to another.

Description
The move command is an input command or event. It is used for the following tasks:

• The DirXML engine sends the move command to the subscriber shim to request that the
external application move an entry from one container to another. The move command must
contain an <association> element.

• The publisher shim sends a move event as notification that an entry has been moved to a
different container in the external application. When the move command is used for event
notification, it must contain an <association> element.

Definition
<!ELEMENT move (association?, parent)>
<!ATTLIST move
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 old-src-dn CDATA #IMPLIED
 class-name CDATA #IMPLIED
 event-id CDATA #IMPLIED>

Attributes
src-dn

Specifies the distinguished name of the entry, after the move, in the name space of the sender.

src-entry-id
Specifies the entry ID of the entry in the name space of the sender. It is used internally by the
DirXML engine and should be ignored by the driver.

dest-dn
Specifies the distinguished name of the entry in the name space of the receiver. It is used
internally by the DirXML engine and should be ignored by the driver.

dest-entry-id
Specifies the entry ID of the entry in the name space of the receiver. It is used internally by the
DirXML engine and should be ignored by the driver.

old-src-name
Specifies the distinguished name of the entry, before the move, in the name space of the sender.

class-name
Specifies the base class of the entry being moved.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
event-id
Specifies an identifier used to identify a particular instance of the command or event.

Elements
<association>

Specifies the unique identifier for the entry in the external application.

<parent>
Specifies the new container for the entry.

Request Format

Command

The DirXML engine sends the following information with a move command to the subscriber shim:

• src-dn which is the new distinguished name after the move
• old-src-dn which is the name before the move
• class-name
• event-id
• <association>
• <parent>

• src-dn which is the parent name after the move
• <association> of the parent if one exists. If one doesn't exist, the subscriber shim should

return a status level of warning and not move the entry.

Event

The driver sends the following information with a move event to the DirXML engine:

• class-name
• event-id (optional)
• <association> of the entry to move
• <parent>

• <association> of the parent

Reply Format
The receiving application should respond to the move command with a status command indicating
whether the move was processed successfully.

Parent
<input> (page 123)
eDirectory DTD Commands and Events 149

150 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Example
The following example illustrates a move command sent by the driver to the DirXML engine.

<move class-name="User" src-dn="\Users\Samuel" old-src-dn="\Samuel">
 <association>1012</association>
 <parent src-dn="\Users\">
 <association>1013</association>
 </parent>
</move>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<query>
Specifies an input that retrieves additional information about an entry from the target application.

Description
The query command is an input command or event. Both the publisher and the subscriber must
implement all defined possibilities. A query is used to find and read information about entries in
eDirectory and the external application.

IMPORTANT: Full functionality for DirXML rules and processing depends upon the full
implementation of the query command by the DirXML driver.

Definition
<!ELEMENT query (association?,
 (search-class |
 search-attr |
 read-attr |
 read-parent)*)>
<!ATTLIST query
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 class-name CDATA #IMPLIED
 scope (%Search-Scope;) "subtree"
 event-id CDATA #IMPLIED>

<!ELEMENT search-class EMPTY>
<!ATTLIST search-class
 class-name CDATA #REQUIRED>

<!ELEMENT search-attr (value)+ >
<!ATTLIST search-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT read-attr EMPTY>
<!ATTLIST read-attr
 attr-name CDATA #IMPLIED
 type (%Read-attr-type;) "default">

<!ELEMENT read-parent EMPTY>

Attributes
dest-dn

Specifies the distinguished name for the starting point for the search. If both the dest-dn
attribute and <association> have values, the <association> value is used as the starting point for
the search. If neither have values, the search begins at the root of the directory.

dest-entry-id
eDirectory DTD Commands and Events 151

152 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Specifies the entry ID in the name space of the receiver. It is used internally by the DirXML
engine and should be ignored by the driver.

class-name
Specifies the base class of the dest-dn attribute.

scope
Specifies the extent of the search. This attribute supports the following values:

• subtree —indicates to search the base entry and all entries in its branch of the directory
tree. If no scope is specified, subtree is used as the default value.

• subordinates —indicates to search the immediate subordinates of the base entry (the base
entry is not searched).

• entry— indicates to search just the base entry.
For scopes other than entry, the selected entries can be further limited by the <search-class>
and <search-attr> elements. For scopes of entry, the <search-class> and <search-attr> elements
are ignored.

event-id
Specifies an identifier used to identify a particular instance of the command or event.

Elements
<association>

Specifies the unique identifier for the entry where the search begins. If both the dest-dn
attribute and <association> have values, the <association> value is used as the starting point for
the search. If neither have values, the search begins at the root of the directory.

<search-class>
Specifies the search filter for object classes. If the query contains no <search-class> elements,
all entries matching the scope and the <search-attr> elements are returned.

<search-attr>
Specifies the search filter for attribute values. If more than one <search-attr> element is
specified, the entry must match all attributes to be returned.

<read-attr>
Specifies which attribute values are returned with entries that match the search filters. If no
attributes are specified, all attributes are returned. If a <read-attr> element is specified without
an attr-name attribute, no attributes are returned.

<read-parent>
Specifies whether the parent of the entry is returned with the entry.

Request Format
A query can include any of the following defined elements and attributes:

• dest-dn or <association> which sets the base, or starting point, for the search.
• dest-entry-id (used internally by DirXML)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• scope
• class-name
• event-id
• <search-class>
• <search-attr>
• <read-attr>
• <read-parent>

Whenever the DirXML engine sends your driver a query, your driver should be prepared to parse the
query for all of the above elements and attributes.

Whenever your driver sends the DirXML engine a query, your driver should be prepared to include
all of the above element and attributes except the dest-entry-id attribute.

For possible entry points when the DirXML engine or the DirXML driver sends a query, see Section
4.5, “Event Processing,” on page 110.

Reply Format
The receiving application should respond to a query with an instance command for each entry
returned. The response should also include a status command indicating whether the query was
processed successfully. A query should return a successful status even when no entries exist that
match the search criteria.

Parent
<input> (page 123)
<config-object> (page 179)

Remarks
A query is search operation. When the query is searching for a match, the following elements and
attributes are used to specify matching criteria:

• The scope determines whether the search includes just the entry, the entries in one container, or
an entire branch of the directory tree.

• The <search-class> element specifies the base class the entry must match. If no <search-class>
elements are specified, all entries in the scope are selected as matched.

• The <search-attr> element specifies the attribute and value an entry must match. If more than
one value is specified for an attribute, the entry must match all values. If more than one
attribute is specified, the entry must match all attributes.

A query is a read operation. When the query is requesting entry and attribute information, the
following elements and attributes are used to specify the information returned.

• The scope, <search-class>, and <search-attr> tags determine which entries are returned.
• The <read-attr> element determines which attributes and values are returned. If no <read-attr>

elements are specified, all attributes of the entry are returned. If a single <read-attr> element is
specified without an attr-name attribute, no attributes are returned.
eDirectory DTD Commands and Events 153

154 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• The <read-parent> element determines whether the entry's parent is returned.

Example
The following examples illustrate two queries which search different parts of the directory and
return different information about the entry.

<!-- Example #1 -->
<!-- Search the whole application for a User entry with -->
<!-- the Surname of Jones. -->
<!-- Don’t read any attributes, but read the parent entry-->
<query class-name="User" event-id="0" scope="subtree">
 <search-class class-name="User"/>

 <search-attr attr-name="Surname">
 <value type="string">Jones</value>
 </search-attr>
 <read-attr/>
 <read-parent/>
</query>

<!-- Example #2 -->
<!-- Read the User entry whose foreign key is 1011 -->
<!-- Read the Surname, cn, Given Name and -->
<!-- Telephone Number attributes -->
<query class-name="User" event-id="1" scope="entry">
 <association>1011</association>
 <read-attr attr-name="Surname"/>
 <read-attr attr-name="cn"/>
 <read-attr attr-name="Given Name"/>
 <read-attr attr-name="Telephone Number"/>
</query>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<query-schema>
Specifies an input which returns an XML document that describes the schema of the target
application.

Description
The query-schema command is an input command or event. It is used to read the schema definition
from eDirectory or the external application. It includes only one piece of data, an event-id which
identifies the command. Currently this is an optional command, but if it is not implemented, rule
configuration is more difficult.

The DirXML engine has implemented this command so that

• The DirXML driver and the ConsoleOne snapin can query eDirectory and receive back an
XML schema-def document that defines the eDirectory schema.

• The DirXML engine and ConsoleOne snapin can query the DirXML driver and receive back an
XML schema-def document that defines the schema of the external application.

Definition
<!ELEMENT query-schema EMPTY>
<!ATTLIST query-schema
 event-id CDATA #IMPLIED>

Attributes
event-id

Specifies an identifier used to identify a particular instance of the command or event.

Request Format
The request command or event includes the event-id attribute.

Reply Format
The receiving application should respond to a query-schema command with a schema-def document
and a status command indicating whether the command was processed successfully.

Parent
<input> (page 123)

Remarks
If the DirXML driver implements this command, the DirXML engine queries the driver for its
schema and stores the returned XML document in the DirXML-ApplicationSchema attribute of the
eDirectory DTD Commands and Events 155

156 NDK: Novel

novdocx (E
N

U
) 01 February 2006
driver object. The DriverShim init method should include procedures to update the DirXML-
ApplicationSchema attribute when the schema of the external application is modified.

For more information on the format of the schema-def document, see <schema-def> (page 162).

Example
<query-schema/>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<remove-association>
Specifies an input or output that removes an association from the specified entry.

Description
The remove-association command notifies the DirXML engine that a particular unique key is not
valid. The DirXML engine never sends a remove-association command to the external application.
The DirXML driver sends this command to the DirXML engine either as an input or output
command.

This command has two main purposes. The first allows an event transformation to change a delete
command into a remove-association command. When an entry is deleted in an external application,
a system administrator may not want that entry deleted from eDirectory. When that is the case, an
event transformation rule needs to convert the delete command to a remove-association command.

The other use for this command is for the following condition that shouldn't occur, but might. If the
DirXML engine sends the driver an association that doesn't match anything in its external
application, the driver can return a command to remove the bogus association.

Definition
<!ELEMENT remove-association (#PCDATA) >
<!ATTLIST remove-association
 event-id CDATA #IMPLIED>

Attributes
event-id

Specifies an identifier used to identify a particular instance of the command or event.

Request Format

Event

The remove-association event must include the following:

• event-id
• PCDATA which contains the key to remove

Reply Format
If the event is an input event, the DirXML engine returns a status command indicating whether the
event was processed successfully.

Parent
<input> (page 123)
eDirectory DTD Commands and Events 157

158 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<output> (page 125)

Example
The following example shows a remove-association event sent by the driver.

<remove-association>{BC3E7155-CDF9-d311-9846-0008C76B16C2}</remove-
association>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<rename>
Specifies an input that renames an entry in the target application.

Description
The rename command is an input command or event. It renames the entry; it cannot move an entry
from one container to another in a hierarchical database. It is used for the following tasks:

• The DirXML engine sends the rename command to the subscriber shim to request that the
external application rename an entry. The rename command must contain an association
element.

• The publisher shim sends the rename command as an event notification that an entry has been
renamed in the external application. When the rename command is used for event notification,
it must contain an association element.

Definition
<!ELEMENT rename (association?, new-name)>
<!ATTLIST rename
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED
 old-src-dn CDATA #IMPLIED
 remove-old-name (%Boolean;) "true"
 class-name CDATA #IMPLIED
 event-id CDATA #IMPLIED>

<!ELEMENT new-name (#PCDATA)>

Attributes
src-dn

Specifies the new distinguished name of the entry in the name space of the sender.

src-entry-id
Specifies the entry ID of the entry in the name space of the sender. It is used internally by the
DirXML engine and should be ignored by the driver.

dest-dn
Specifies the distinguished name of the entry in the name space of the receiver. It is used
internally by the DirXML engine and should be ignored by the driver.

dest-entry-id
Specifies the entry ID of the entry in the name space of the receiver. It is used internally by the
DirXML engine and should be ignored by the driver.

old-src-dn
eDirectory DTD Commands and Events 159

160 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Specifies the old distinguished name of the entry in the name space of the sender.

remove-old-name
Specifies whether the old relative distinguished name should be deleted or retained. If not
specified, defaults to "true" which removes the old name.

class-name
Specifies the base class of the entry being renamed.

event-id
Specifies an identifier used to identify a particular instance of the command or event.

Elements
<association>

Specifies the unique identifier for the entry in the external application.

<new-name>
Specifies the new relative distinguished name for the entry.

Request Format

Command

The DirXML engine sends the following information with the rename command to the subscriber
shim:

• <association>
• src-dn which is the new distinguished name after the change
• old-src-dn which is the distinguished name before the change
• remove-old-name which determines whether the old name value is retained. This may not be

relevant to a particular external application.
• class-name
• event-id
• <new-name> which is the new relative distinguished name of the entry

Event

The publisher shim sends the following information with a rename command to the DirXML
engine:

• <association>
• src-dn which is the new distinguished name after the change
• remove-old-name which determines whether the old name value is retained. If not specified,

defaults to removing the old name value.
• class-name
• event-id (optional)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• <new-name> which is the new relative distinguished name of the entry

Reply Format
The receiving application should respond to a rename command with a status command indicating
whether the rename was processed successfully.

Parent
<input> (page 123)

Example

<rename class-name="User" src-dn="\Samuel" old-src-dn="\Sam">
 <association>1012</association>
 <new-name>Samuel</new-name>
</rename>
eDirectory DTD Commands and Events 161

162 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<schema-def>
Specifies an output that contains the class and attribute definitions in the eDirectory schema or the
external application's schema.

Description
The <schema-def> element is part of the reply to a <query-schema> element and to the DriverShim
getSchema method. The reply includes the <status> and then the <schema-def> element.

The <schema-def> element defines the available classes and attributes in the database. The DirXML
snapin to ConsoleOne uses this file to display the schema definitions to administrators so that they
can create mapping rules by clicking on the displayed classes and attributes.

Definition
<!ELEMENT schema-def (class-def)* >
<!ATTLIST schema-def
 hierarchical (%Boolean;) "true">
 application-name CDATA #IMPLIED>

<!ELEMENT class-def (attr-def)* >
<!ATTLIST class-def
 class-name CDATA #REQUIRED
 asn1id CDATA #IMPLIED
 container (%Boolean;) "false">

<!ELEMENT attr-def EMPTY>
<!ATTLIST attr-def
 attr-name CDATA #REQUIRED
 asn1id CDATA #IMPLIED
 type (%Attr-type;) "string"
 required (%Boolean;) "false"
 naming (%Boolean;) "false"
 multi-valued (%Boolean;) "true"
 case-sensitive (%Boolean;) "false"
 read-only (%Boolean;) "false">

Attributes
hierarchical

Specifies whether the data is stored in a hierarchical structure. If not specified, defaults to a
hierarchical structure.

application-name
Specifies the name of the application that uses the schema.

Elements
<class-def>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Specifies a class definition for the originating schema.

<attr-def>
Specifies an attribute definition for the parent <class-def> element.

Required Elements
The following elements and attributes are required to define an object class.

<schema-def>
 <class-def class-name="xxx">
 <attr-def attr-name="aaa"/>
 </class-def>
</schema-def>

All other class-def and attr-def attributes are optional. The XML documents for schema definitions
can become very large. Therefore, if the default values for the XML attributes match the attribute or
class schema definition, do not specify them in the XML document.

Parent
<output> (page 125)

Remarks
The schema for the external application is not read dynamically. During initial set up, DirXML
sends a schema read operation to your driver and stores the returned XML document. If the schema
in your application changes, your driver will need to be stopped and the new XML schema
document needs to be sent to the DirXML engine during initialization.

The <schema-def> element does not need to include all class and attribute definitions; it needs to
include all class definitions for the entries that eDirectory and the external application will
synchronize. The class definition does not need to include all attribute definitions; it needs to
include the attribute definitions for the attributes that eDirectory and the external application will
synchronize.

Example
The following example displays a definition for four classes (Organization, Organizational Unit,
User, and Bogus). Most of the <attr-def> elements have more information than fits on one line, so
the lines are wrapped and indented. Such wrapped lines do not begin with a <.

schema-def hierarchical="true">
 <class-def class-name="Organization" container="true">
 <attr-def attr-name="Name" case-sensitive="false" multi-
valued="false"
 naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
eDirectory DTD Commands and Events 163

164 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 </class-def>

 <class-def class-name="Organizational Unit" container="true">
 <attr-def attr-name="Name" case-sensitive="false" multi-
valued="false"
 naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 </class-def>

 <class-def class-name="User" container="false">
 <attr-def attr-name="cn" case-sensitive="false" multi-
valued="false"
 naming="true" read-only="false" required="true"
type="string"/>
 <attr-def attr-name="Surname" case-sensitive="false" multi-
valued="false"
 naming="false" read-only="false" required="false"
 type="string"/>
 <attr-def attr-name="Given Name" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="false" type="string"/>
 <attr-def attr-name="Telephone Number" case-sensitive="false"
 multi-valued="true" naming="false" read-only="false"
 required="false" type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 </class-def>

 <class-def class-name="Bogus" container="false">
 <attr-def attr-name="Whatever" case-sensitive="false" multi-
valued="true"
 naming="true" read-only="false" required="false"
type="string"/>
 <attr-def attr-name="Object Path" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 <attr-def attr-name="Unique Id" case-sensitive="false"
 multi-valued="false" naming="false" read-only="false"
 required="true" type="string"/>
 </class-def>
</schema-def>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
A more complete document for the eDirectory schema is found in the schema.xml file. Since the
eDirectory schema is extensible, this file does not include all possible attributes for a class. The
ConsoleOne snap-in reads the eDirectory schema dynamically whenever it displays the classes and
attributes.
eDirectory DTD Commands and Events 165

166 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<status>
Specifies either an output that is the response to an input or an input that contains the status of the
driver.

Description
The <status> element can be sent under the following conditions:

• As a reply to a command or event. More than one <status> element can be returned for a
command or event.

• As a log message in an input event. The DirXML driver sends the status to the DirXML engine
whenever the driver wants to log the driver's status in the DirXML log.

Definition
<!ELEMENT status ANY >
<!ATTLIST status
 level (%Status-Level;) #REQUIRED
 event-id CDATA #IMPLIED>

Attributes
level

Specifies the level of success of the command or event. It uses the following flags:
• fatal—indicates that the driver should be shutdown
• error—indicates that the operation did not succeed
• warning—indicates that the operation succeeded but that an warning was logged.
• success—indicates the operation succeeded
• retry—indicates that the application was not responding and therefore the operation

should be rescheduled for another time

event-id
If the level is error or warning, specifies the event-id of the input command and the <status>
element contains text that explains the warning or error.

Parent
<input> (page 123)
<output> (page 125)

Example
The following example illustrates two <status> elements.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<!-- Example #1 -->
<status event-id="0" level="success"/>

<!-- Example #2 -->
<status event-id="0" level="warning">Objects in the rear view mirror
may appear closer than they are!</status>

7.4 Other Elements
The elements described in this section are child elements of the command and event elements, the
nds element, or the rule elements.
eDirectory DTD Commands and Events 167

168 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<add-attr>
Specifies the attributes and values to add.

Definition
<!ELEMENT add-attr (value+)>
<!ATTLIST add-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the attribute.

Elements
<value>

Specifies the attribute's value.

Parent
<add> (page 127)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<add-value>
Specifies the values to add.

Definition
<!ELEMENT add-value (value+)>

Elements
<value>

Specifies the attribute value to add.

Parent
<modify-attr>
eDirectory DTD Commands and Events 169

170 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<allow-attr>
Specifies which attributes in the class are allowed in the event filter.

Definition
<!ELEMENT allow-attr EMPTY>
<!ATTLIST allow-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the attribute.

Parent
<allow-class>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<allow-class>
Specifies the classes that are allowed by the event filter.

Definition
<!ELEMENT allow-class (allow-attr)* >
<!ATTLIST allow-class
 class-name CDATA #REQUIRED>

Attributes
class-name

Specifies the name of the class.

Parent
<driver-filter>
eDirectory DTD Commands and Events 171

172 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<association>
Specifies the key which uniquely identifies an entry in the external application.

Description
The association can be any character string such as the entry's distinguished name or a number. The
DirXML engine stores the association in the DirXML-Associations (page 276) attribute of the
eDirectory entry. It is used for the following tasks:

• The publisher shim sends the <association> element to the DirXML engine as an event
notification when an entry in the external application has been modified, moved, renamed,
deleted, or added.

• The DirXML engine sends the <association> element to the subscriber shim with a add, delete,
modify, move, or rename command.

• Both the DirXML engine and the DirXML driver send the <association> element to specify the
base object of a query command.

• Both the DirXML engine and the DirXML driver send the <association> element when
returning <instance> elements that match a query.

Definition
<!ELEMENT association (#PCDATA)>
<!ATTLIST association
 state (%Assoc-State;) #IMPLIED

Attributes
state

Reserved, used internally by the DirXML engine.

Parent
<add> (page 127)
<delete> (page 132)
<instance> (page 139)
<modify> (page 141)
<modify-association> (page 144)
<move> (page 148)
<query> (page 151)
<parent> (page 187)
<rename> (page 159)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<attr>
Specifies the attributes and values requested by the query. Each attribute should contain at least one
value.

Definition
<!ELEMENT attr (value*)>
<!ATTLIST attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the attribute's name. The engine specifies the name in eDirectory name space and the
driver specifies the name in the application's name space.

Elements
<value>

Specifies the attribute's value.

Parent
<instance> (page 139)
eDirectory DTD Commands and Events 173

174 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<attr-def>
Specifies an attribute definition.

Definition
<!ELEMENT attr-def EMPTY>
<!ATTLIST attr-def
 attr-name CDATA #REQUIRED
 asn1id CDATA #IMPLIED
 type (%Attr-type;) "string"
 required (%Boolean;) "false"
 naming (%Boolean;) "false"
 multi-valued (%Boolean;) "true"
 case-sensitive (%Boolean;) "false"
 read-only (%Boolean;) "false">

Attributes
attr-name

Specifies the attribute definition name used in the originating schema. This name is mapped
between the application and eDirectory through the schema mapping rules so that eDirectory
sees the attribute name in its name space and the external application sees the attribute name in
its name space.

asn1id
Specifies the object ID (OID) for the attribute (optional).

type
Specifies the type of data contained in the attribute's value. Optional if the attribute contains
string data. For other possible values for type, see <value> (page 200).

required
Specifies whether the attribute is mandatory for the class. If mandatory, the attribute requires a
value in order to create an entry. The default value is "false".

naming
Specifies whether the attribute is used as part of the relative distinguished name of the entry for
this base class. Default value is "false."

multi-valued
Specifies whether the attribute can have multiple values. Default value is "true".

case-sensitive
Specifies whether the value is case sensitive. Default value is "false".

read-only
Specifies whether the value is read-only. Default value is "false".
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Parent
<class-def>

Remarks
The XML documents for schema definitions can become very large. Therefore, if the default values
for the XML attributes match the attribute definition, do not specify them in the XML document.
eDirectory DTD Commands and Events 175

176 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<authentication-info>
Supplies the information that the driver needs to connect and log in to the external application.

Definition
<!ELEMENT authentication-info (server?, user?, password?) >

<!ELEMENT server (#PCDATA)>

<!ELEMENT user (#PCDATA)>

<!ELEMENT password (#PCDATA)>

Elements
<server>

Specifies the name of the server hosting the external application in any format that works for
the external application. The name is stored in the DirXML-ShimAuthServer (page 296)
attribute on the DirXML-Driver object.

<user>
Specifies the user the DirXML driver uses to log in to the external application in any format
that works for the external application. The name is stored in the DirXML-ShimAuthID
(page 294) on the DirXML-Driver object.

<password>
Specifies the user's password in any format that works for the external application. The
password is stored securely in the DirXML-ShimAuthPassword (page 295) on the DirXML-
Driver object.

Parent
<init-params> (page 134)

Remarks
All of the elements in the <authentication-info> element are optional, so you can select the elements
that apply to the external application.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<class-def>
Specifies a class definition for the originating schema.

Definition
<!ELEMENT class-def (attr-def)* >
<!ATTLIST class-def
 class-name CDATA #REQUIRED
 asn1id CDATA #IMPLIED
 container (%Boolean;) "false">

Attributes
class-name

Specifies the class definition name used in the originating schema. This name is mapped
between the application and eDirectory through the schema mapping rules so that eDirectory
sees the class name in its name space and the external application sees the class name in its
name space.

asn1id
Specifies the object ID (OID) for the class (optional).

Elements
<attr-def>

Specifies an attribute definition for the class specified in the <class-def> element.

Parent
<schema-def>
eDirectory DTD Commands and Events 177

178 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<component>
Specifies an individual field of a structured value.

Definition
<!ELEMENT component (#PCDATA)>
<!ATTLIST component
 name CDATA #REQUIRED
 association-ref CDATA #IMPLIED>

Attributes
name

Specifies the name of the component and is specific to the individual attribute syntax.

association-ref
When present, marks the component as referential. When a component is marked referential,
the component's value is the association of an existing entry in eDirectory. eDirectory validates
these values, modifies them if the association changes, and deletes them if the association is
deleted.

Parent
<value> (page 200)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<config-object>
Specifies an object or objects where additional configuration information can be obtained.

Description
During driver initialization, the DirXML engine processes the <query> element, replaces the
<config-object> in the <init-params> with the <instance> elements returned, and passes the <init-
params> to the DriverShim, SubscriptionShim, and PublicationShim init methods.

Definition
<!ELEMENT config-object (query) >
<!ATTLIST config-object
 display-name CDATA #IMPLIED>

Attributes
display-name

Specifies the name to display in the ConsoleOne interface.

Elements
<query>

Specifies where to look for the configuration objects.

Parent
<driver-options> (page 182)
<publisher-options> (page 189)
<subscriber-options> (page 197)
eDirectory DTD Commands and Events 179

180 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<driver-filter>
Specifies the object classes and attributes for which the publisher can send modifications and for
which the subscriber can receive modifications.

Description
The filter controls the information that eDirectory synchronizes with the external application and
helps designate the authoritative source of the information. A driver which publishes changes to an
attribute but does not subscribe for changes to that attribute is set up in DirXML to be the
authoritative source for that attribute. (The other step is to modify the attribute's ACL in eDirectory
so that the driver object is the only object with rights to modify the attribute). If no authoritative
sources are being set up, the subscription and publication filters can be the same. The driver filter is
stored in the DirXML-DriverFilter (page 279) attribute of the DirXML-Publisher and DirXML-
Subscriber objects in eDirectory.

The DirXML engine processes the filter according to the channel:

• For the subscriber channel which sends events from eDirectory to the driver, the engine applies
the subscriber filter to the eDirectory events before applying the event transformation rules (see
Section 8.5, “Event Transformation Rules,” on page 233).

• For the publisher channel which sends events from the driver to the engine, the engine applies
the filter after applying input transformation rules (see Section 8.7, “Input Transformation Style
Sheets,” on page 236) and the schema mapping rules (see <attr-name-map> (page 205)).

The attributes and the classes specified in the filters must complement the attributes and classes
specified in the rules. For example, if the create rule for the subscriber specifies that a User object
must have a Surname attribute, then the subscriber filter should include the User object and its
Surname attribute.

Definition
<!ELEMENT driver-filter (allow-class)* >
<!ATTLIST driver-filter
 type (publisher|subscriber) #IMPLIED>

<!ELEMENT allow-class (allow-attr)* >
<!ATTLIST allow-class
 class-name CDATA #REQUIRED>

<!ELEMENT allow-attr EMPTY>
<!ATTLIST allow-attr
 attr-name CDATA #REQUIRED>

Attributes
type

Specifies whether publisher or subscriber should use the filter
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Elements
<allow-class>

Specifies the classes that are allowed by the filter

Format
A driver-filter contains the following:

• type attribute which specifies whether the publisher or the subscriber should use the filter. If
type is not specified, both use the filter.

• <allow-class> (0 or more) which specifies the classes that are allowed by the filter
• class-name attribute which specifies the class name
• <allow-attr> (0 or more) which specifies the attributes of the enclosing class that are

allowed by the filter. This element contains an attr-name attribute.

Parent
<init-params> (page 134)

Sample Filter
The VR Test driver can be configured to use the following sample filter for the subscriber shim. This
sample starts with the <input> element. The filter allows the subscriber to receive modifications for
four attributes of the User object class.

...
<input>
 <init-params>
 <driver-filter>
 <allow-class class-name="User">
 <allow-attr attr-name="Surname"/>
 <allow-attr attr-name="CN"/>
 <allow-attr attr-name="Given Name"/>
 <allow-attr attr-name="Telephone Number"/>
 </allow-class>
 </driver-filter>
...
eDirectory DTD Commands and Events 181

182 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<driver-options>
Specifies configuration options for the DriverShim.

Definition
<!ELEMENT driver-options (ANY | config-object)* >

Elements
<config-object>

Specifies an object or objects where additional configuration information can be obtained.

Parent
<init-params> (page 134)

Remarks
The <driver-options> element accepts any valid XML element and attribute tags.You are free to
define tags for whatever configuration options an administrator needs to make your driver function
in a specific environment. The elements and attributes can contain only text.

For example, if the driver is using LDAP to communicate with the external application, the
administrator might need an option to configure the port. You could use a <port> tag with numeric
text to specify the port.

Sample Option Tags
The VRTest driver uses the following options.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<driver-config name="VRTestServer Driver">
 <driver-options>
 <server-id display-name="Server Instance Id">02</server-id>
 </driver-options>
 <subscriber-options>
 </subscriber-options>
 <publisher-options>
 <allow-loopback display-name="Allow Loopback">no</allow-
loopback>
 <use-filter display-name="Use Filter">yes</use-filter>
 <log-input display-name="Log Input to NDS">no</log-input>
 <save-state-each-event display-name="Save state with each
event">no</save-state-each-event>
 </publisher-options>
</driver-config>

The tags under the driver-options and publisher-options are defined by the VR Test driver. The one
exception is the display-name attribute. ConsoleOne uses this tag with its beginning and ending
quotation marks to parse the file and display each of the configuration options for the driver, the
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
publisher, and subscriber. If you do not include the display-name attribute, the ConsoleOne snapin
displays the element name for the configuration parameter.
eDirectory DTD Commands and Events 183

184 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<driver-state>
Allows the DriverShim to save any required state information that it needs when it is initialized
again.

Definition
<!ELEMENT driver-state ANY >

Parent
<init-params> (page 134)

Remarks
The ANY element allows you to add tags for whatever state information your driver needs to
determine whether a transaction completed successfully. The DirXML engine keeps a queue of
pending transactions and does not delete a transaction until the DirXML driver sends back the state
of the transaction.

A state element can be included in any output or input command which the driver sends to the
DirXML engine.The DirXML engine stores the information in the DirXML-DriverStorage attribute
of the DirXML-Driver object and returns the information in the init-params command when the
driver shim, subscriber shim, and publisher shim are started.

Sample State Tags
The VR Test driver saves the state information for the DriverShim. This information consists of a
timestamp and a count. This sample XML starts with the <input> element.

...
<input>
 <init-params>
 ...
 <driver-state>
 <time-stamp>2000-02-18 10:06:52.610</time-stamp>
 <run-count>51</run-count>
 </driver-state>
 </init-params>
</input>
...

If you have binary data to save as state information, you will need to encode it as base64.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<modify-attr>
Specifies the attribute values to modify for the modify command or event.

Description
Each <modify-attr> element must contain at least one <add-value>, <remove-all-values> or
<remove-value> element.

Definition
<!ELEMENT modify-attr (remove-value |
 remove-all-values |
 add-value)+>
<!ATTLIST modify-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT remove-all-values EMPTY>

<!ELEMENT remove-value (value+)>

<!ELEMENT add-value (value+)>

Attributes
attr-name

Specifies the name of the attribute to modify.

Elements
<remove-value>

Specifies the value to remove. This element may be included multiple times. If the value
doesn't exist, the driver should ignore the discrepancy and return success.

<remove-all-values>
Specifies to remove all values of the attribute.

<add-value>
Specifies the value to add to the attribute. This element may be included multiple times. If the
value already exists, the driver should ignore the discrepancy and return success.

Parent
<modify> (page 141)
eDirectory DTD Commands and Events 185

186 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<old-password>
Specifies the existing password in a <modify-password> event. Added in DirXML 1.1.

Definition
<!ELEMENT old-password (#PCDATA)>

Elements
<old-password>

Specifies the current password.

Parent
<modify-password> (page 146)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<parent>
Specifies the entry's parent container.

Description
The <parent> element specifies

• The container of an entry in an instance command or event
• The destination container for a move event or move command

Definition
<!ELEMENT parent (association?)>
<!ATTLIST parent
 src-dn CDATA #IMPLIED
 src-entry-id CDATA #IMPLIED
 dest-dn CDATA #IMPLIED
 dest-entry-id CDATA #IMPLIED>

Attributes
src-dn

Specifies the distinguished name of the parent entry.

src-entry-id
Reserved, used internally by the DirXML engine.

dest-dn
Reserved, used internally by the DirXML engine.

dest-entry-id
Reserved, used internally by the DirXML engine.

Elements
<association>

Specifies the parent's unique key in the external application.

Parent
<instance> (page 139)
<move> (page 148)
eDirectory DTD Commands and Events 187

188 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Remarks
When the DirXML engines sends the <parent> element to the DirXML driver in a <move> or
<instance> element, the <association> element is included if an association has been established for
the parent.

When the DirXML driver sends the <parent> element to the DirXML engine in a <move> or
<instance> element, the <parent> element must contain an <association> element.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<publisher-options>
Specifies configuration options for the PublisherShim.

Definition
<!ELEMENT publisher-options (ANY | config-object)* >

Elements
<config-object>

Specifies an object or objects where additional configuration information can be obtained.

Parent
<init-params> (page 134)

Remarks
The <publisher-options> element accepts any valid XML element and attribute tags. You are free to
define tags for whatever configuration options an administrator needs to make your driver function
in a specific environment. The elements and attributes can contain only text.

For example, if the driver is using LDAP to communicate with the external application, the
administrator might need an option to configure the port. You could use a <port> tag with numeric
text to specify the port.

Sample Option Tags
The VRTest driver uses the following options.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<driver-config name="VRTestServer Driver">
 <driver-options>
 <server-id display-name="Server Instance Id">02</server-id>
 </driver-options>
 <subscriber-options>
 </subscriber-options>
 <publisher-options>
 <allow-loopback display-name="Allow Loopback">no</allow-
loopback>
 <use-filter display-name="Use Filter">yes</use-filter>
 <log-input display-name="Log Input to NDS">no</log-input>
 <save-state-each-event display-name="Save state with each
event">no</save-state-each-event>
 </publisher-options>
</driver-config>

The tags under the driver-options and publisher-options are defined by the VR Test driver. The one
exception is the display-name attribute. ConsoleOne uses this tag with its beginning and ending
quotation marks to parse the file and display each of the configuration options for the driver, the
eDirectory DTD Commands and Events 189

190 NDK: Novel

novdocx (E
N

U
) 01 February 2006
publisher, and subscriber. If you do not include the display-name attribute, the ConsoleOne snapin
displays the element name for the configuration parameter.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<publisher-state>
Allows the PublisherShim to save any required state information that it needs when it is initialized
again.

Definition
<!ELEMENT publisher-state ANY >

Parent
<init-params> (page 134)

Remarks
The ANY element allows you to add tags for whatever state information your driver needs to
determine whether a transaction completed successfully. The DirXML engine keeps a queue of
pending transactions and does not delete a transaction until the DirXML driver sends back the state
of the transaction.

A state element can be included in any output or input command which the driver sends to the
DirXML engine.The DirXML engine stores the information in the DirXML-DriverStorage attribute
of the DirXML-Driver object and returns the information in the init-params command when the
driver shim, subscriber shim, and publisher shim are started.

Sample State Tags
The VR Test driver saves the state information for the DriverShim. This information consists of a
timestamp and a count. This sample XML starts with the <input> element.

...
<input>
 <init-params>
 ...
 <publisher-state>
 <time-stamp>2000-02-18 10:06:52.610</time-stamp>
 <run-count>51</run-count>
 </publisher-state>
 </init-params>
</input>
...

If you have binary data to save as state information, you will need to encode it as base64.
eDirectory DTD Commands and Events 191

192 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<read-attr>
Specifies which attribute values are returned with entries that match the search filter. If no attributes
are specified, all attributes are returned. If a <read-attr> element is specified without an attr-name
attribute, no attributes are returned.

Definition
<!ELEMENT read-attr EMPTY>
<!ATTLIST read-attr
 attr-name CDATA #IMPLIED
 type (%Read-attr-type;) "default">

Attributes
attr-name

Specifies the name of the attribute that should be returned with its value for all matching
entries. The attribute's name is specified in the name space of the sender.

type
Specifies how to parse the attribute's value. It supports two values: "default" and "xml". If
type="xml", then the attribute value will be parsed as XML and returned as such.

Parent
<query> (page 151)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<remove-value>
Specifies the values to remove.

Definition
<!ELEMENT remove-value (value+)>

Elements
<value>

Specifies the attribute value to remove.

Parent
<modify-attr>
eDirectory DTD Commands and Events 193

194 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<search-attr>
Specifies the search filter for attribute values. If more than one <search-attr> element is specified,
the entry must match all attributes to be returned.

Definition
<!ELEMENT search-attr (value)+ >
<!ATTLIST search-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the attribute that entry must have to be returned.

Elements
<value>

Specifies the attribute value the entry must have to be returned. If more than one value is
specified for the attribute, the entry must match all values to be returned.

Parent
<query> (page 151)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<search-class>
Specifies the search filter for object classes. If the query contains no <search-class> elements, all
entries matching the scope and the <search-attr> elements are returned.

Definition
<!ELEMENT search-class EMPTY>
<!ATTLIST search-class
 class-name CDATA #REQUIRED>

Attributes
class-name

Specifies the base class of the entries to search for. An entry must match one of the specified
base classes to be returned.

Parent
<query> (page 151)
eDirectory DTD Commands and Events 195

196 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<source>
Specifies the source that created the XML document.

Definition
<!ELEMENT source (product?, contact?)>

<!ELEMENT product (#PCDATA)>
<!ATTLIST product
 version CDATA #IMPLIED
 asn1id CDATA #IMPLIED>

<!ELEMENT contact (#PCDATA)>

Elements
product

Specifies the name of the product that produced the document.

contact
Specifies a point of contact for the product such as a telephone number or a company.

Attributes of <product>
version

Specifies the version of the product.

asn1id
Specifies the ASN1 ID or OID assigned to the product.

Parent
<nds> (page 119)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<subscriber-options>
Specifies configuration options for the SubscriptionShim.

Definition
<!ELEMENT subscriber-options (ANY | config-object)* >

Elements
<config-object>

Specifies an object or objects where additional configuration information can be obtained.

Parent
<init-params> (page 134)

Remarks
The <subscriber-options> element accepts any valid XML element and attribute tags.You are free to
define tags for whatever configuration options an administrator needs to make your driver function
in a specific environment. The elements and attributes can contain only text.

For example, if the driver is using LDAP to communicate with the external application, the
administrator might need an option to configure the port. You could use a <port> tag with numeric
text to specify the port.

Sample Option Tags
The VRTest driver uses the following options.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<driver-config name="VRTestServer Driver">
 <driver-options>
 <server-id display-name="Server Instance Id">02</server-id>
 </driver-options>
 <subscriber-options>
 </subscriber-options>
 <publisher-options>
 <allow-loopback display-name="Allow Loopback">no</allow-
loopback>
 <use-filter display-name="Use Filter">yes</use-filter>
 <log-input display-name="Log Input to NDS">no</log-input>
 <save-state-each-event display-name="Save state with each
event">no</save-state-each-event>
 </publisher-options>
</driver-config>

The tags under the driver-options and publisher-options are defined by the VR Test driver. The one
exception is the display-name attribute. ConsoleOne uses this tag with its beginning and ending
quotation marks to parse the file and display each of the configuration options for the driver, the
eDirectory DTD Commands and Events 197

198 NDK: Novel

novdocx (E
N

U
) 01 February 2006
publisher, and subscriber. If you do not include the display-name attribute, the ConsoleOne snapin
displays the element name for the configuration parameter.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<subscriber-state>
Allows the SubscriberShim to save any required state information that it needs when it is initialized
again.

Definition
<!ELEMENT subscriber-state ANY >

Parent
<init-params> (page 134)

Remarks
The ANY element allows you to add tags for whatever state information your driver needs to
determine whether a transaction completed successfully. The DirXML engine keeps a queue of
pending transactions and does not delete a transaction until the DirXML driver sends back the state
of the transaction.

A state element can be included in any output or input command which the driver sends to the
DirXML engine.The DirXML engine stores the information in the DirXML-DriverStorage attribute
of the DirXML-Driver object and returns the information in the init-params command when the
driver shim, subscriber shim, and publisher shim are started.

Sample State Tags
The VR Test driver saves the state information for the DriverShim. This information consists of a
timestamp and a count. This sample XML starts with the <input> element.

...
<input>
 <init-params>
 ...
 <subscriber-state>
 <time-stamp>2000-02-18 10:06:52.610</time-stamp>
 <run-count>51</run-count>
 </subscriber-state>
 </init-params>
</input>
...

If you have binary data to save as state information, you will need to encode it as base64.
eDirectory DTD Commands and Events 199

200 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<value>
Specifies an attribute's value.

Definition
<!ELEMENT value (#PCDATA | component)*>
<!ATTLIST value
 type (%Attr-type;) #IMPLIED
 association-ref CDATA #IMPLIED
 naming (%Boolean;) "false">

Attributes
type

Specifies the syntax of the directory attribute.
• If the type is structured, the <value> element contains at least one <component> element.
• If the type is octet, the <value> element contains base64 encoded binary data.
• If the type is neither structured or octet, the <value> element contains text.

association-ref
When present, marks the value as referential and contains the association value (see
<association> (page 172)). When a syntax is marked referential, the attribute's value must be
the distinguished name of an existing entry in eDirectory. eDirectory validates these values,
modifies them if the entry's name changes, and deletes them if the entry is deleted.

naming
Reserved; used internally by the DirXML engine to mark the attribute as a directory attribute
that names the entry. Such marked attributes require a rename command rather than a modify
command to modify the value.

Elements
<component>

Specifies an individual field of a structured attribute.

Parent
The following elements are parents of the <value> element:

<add-attr>
<add-value>
<attr>
<match-attr>
<remove-value>
<required-attr>
<search-attr>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Remarks
eDirectory supports 28 syntax definitions that can be used for an attribute's type. DirXML supports
only 10. The following table shows how the 28 definitions have been mapped to the 10 definitions
and the component names that have been supplied for the various structured syntax definitions.

Table 7-2 Mapping eDirectory syntax to DirXML syntax

 eDirectory Syntax Name DirXML Type Components and Notes

SYN_UNKOWN octet base64 encoded data

SYN_DIST_NAME dn referential

SYN_CE_STRING string

SYN_CI_STRING string

SYN_PR_STRING string

SYN_NU_STRING string

SYN_CI_LIST structured one or more string components

SYN_BOOLEAN state "true" or "false"

SYN_INTEGER int

SYN_OCTET_STRING octet base64 encoded data

SYN_TEL_NUMBER teleNumber

SYN_FAX_NUMBER structured three components:

• faxNumber

• faxBitCount

• faxParameters

base64 encoded data

SYN_NET_ADDRESS structured two components

• netAddrType

• netAddr

base64 encoded data

SYN_OCTET_LIST structured one or more octet components.

base64 encoded data

SYN_EMAIL_ADDRESS structured two components:

• eMailType

• eMailAddr
eDirectory DTD Commands and Events 201

202 NDK: Novel

novdocx (E
N

U
) 01 February 2006
For more information about the eDirectory syntax definitions, see the NDS Schema Reference.

SYN_PATH structured three components:

• nameSpace

• volume (referential)

• path

SYN_REPLICA_POINTER structured four components

• server (referential)

• replicaType

• replicaNumber

• count

SYN_OBJECT_ACL structured three components

• protectedName

• trustee (referential)

• privileges

SYN_PO_ADDRESS structured 6 string components

SYN_TIMESTAMP structured three components:

• seconds

• replicaNumber

• eventID

SYN_CLASS_NAME className

SYN_STREAM octet 64base encoded data

SYN_COUNTER counter

SYN_BACK_LINK structured two components:

• serverDn (referential)

• remoteId

SYN_TIME time

SYN_TYPED_NAME structured three components:

• dn (referential)

• level

• interval

SYN_HOLD structured two components:

• holdEntryDn (referential)

• holdAmount

SYN_INTERVAL interval

 eDirectory Syntax Name DirXML Type Components and Notes
l Identity Manager (DirXML) Driver Kit

8
novdocx (E

N
U

) 01 February 2006
8Rule Reference

Rules define what data is transferred and how the data is synchronized between the two database.
The nds.dtd defines the XML syntax for the rules, and the administrator uses ConsoleOne® (which
hides the XML syntax) to create a rule file. The file is then stored in eDirectoryTM as XML data in a
stream attribute.

In addition to the XML-formatted rules, a driver can use XSLT style sheets for the following:

• Event transformations rules
• Input transformation rules
• Output transformation rules
• Matching, create, and placement rules

Whether an XML-formatted rule or an XSLT style sheet, rules transform an input XML document
by changing the data or the XML structure to form a result, or output, document. For example, a
create rule blocks the creation of an entry by transforming the input document containing the <add>
element into an output document that has no <add> element.

Style sheets can be used to generate attribute values for the XML rules. For example, eDirectory
does not require that a CN be unique in the eDirectory tree, but only unique for a particular
container. A style sheet in a create rule can ensure that a CN is unique for the eDirectory tree.

This chapter describes the transformations caused by the rules, the XML format of the rules
(matching, create, and placement), and style sheet restrictions for event transformations, input
transformations, and output transformations. Chapter 9, “Style Sheets,” on page 239 describes
implementation details for style sheets.

For an overview of the rules, see Chapter 4, “Introduction to the Rules and Filters,” on page 103.

The top rule elements in the nds.dtd are described in the following sections:

• <attr-name-map> (page 205)
• <matching-rules> (page 208)
• <create-rules> (page 216)
• <placement-rules> (page 224)

8.1 Schema Mapping Elements
The <attr-name-map> element is the top level element for the schema mapping rules. Mapping rules
determine how the eDirectory schema interacts with the external database schema. They map
eDirectory class definitions and attributes with corresponding attribute and class definitions in the
external application.

Mapping rules can be set up for attribute names or class names:

• An attribute mapping is specified using the <attr-name> element. The rule must specify the
eDirectory name of the attribute and the corresponding name in the application. Optionally, it
can include a classname attribute which specifies the eDirectory class for which the rule
Rule Reference 203

204 NDK: Novel

novdocx (E
N

U
) 01 February 2006
applies. If a classname is not specified, the attribute mapping applies to all classes with that
attribute.

• A class mapping is specified using the <class-name> element. The rule must specify the
eDirectory name of the class and the corresponding name in the application.

The DirXML® engine uses the schema mapping rules to map the class-name and attr-name
attributes of all elements in the document. A class can be mapped to only one class in the other
application.

The rules are applied whenever XML is sent to and returned from the following methods:

• SubscriptionShim.execute
• XmlQueryProcessor.query
• XmlCommandProcessor.execute

The rules are also applied whenever XML is sent to (but not the XML returned from) the following
methods:

• SubscriptionShim.init
• PublicationShim.init

The rules are applied before output transformation rules when the DirXML engine issues a
document to the driver and before input transformation rules when the driver issues a document to
the DirXML engine.

The schema mapping rules should complement the other rules. For example, if the matching rules
depend upon the User class and the Surname, Given Name, and Telephone Attributes, the schema
mapping rules should contain this class and these attributes.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<attr-name-map>
Determines how the eDirectory schema interacts with the application's schema.

Description
The <attr-name-map> element is the top level element for the schema mapping rules. All other
elements in the document are subordinate to this element.

Mapping rules map specified eDirectory class definitions and attributes with corresponding attribute
and class definitions in the external application. Mapping rules are kept in an DirXML-Rule object
and associated with your driver through the DirXML-MappingRule attribute of your driver's
DirXML-Driver object.

Definition
<!ELEMENT attr-name-map (attr-name | class-name)*>

<!ELEMENT attr-name (nds-name, app-name)>
<!ATTLIST attr-name
 class-name CDATA #IMPLIED>

<!ELEMENT class-name (nds-name, app-name)>

<!ELEMENT nds-name (#PCDATA)>

<!ELEMENT app-name (#PCDATA)>

Attributes
class-name

Specifies the class definition which the attribute belongs to in the <attr-name> element.

Elements
<attr-name>

Specifies an attribute mapping between the eDirectory name space and the application name
space.

<class-name>
Specifies a class mapping between the eDirectory name space and the application name space.

<nds-name>
Specifies either the attribute or class name in the eDirectory name space. The attribute names
specified must be unique to the class. The class names specified must be unique in the rules.

<app-name>
Specifies either the attribute or class name in the application name space. The attribute names
specified must be unique to the class. The class names specified must be unique in the rules.
Rule Reference 205

206 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Parent
Top element

Examples
The following example contains three mapping rules.

<attr-name-map>
<!-- map NDS class User application class inetOrgPerson -->

 <class-name>
 <nds-name>User</nds-name>
 <app-name>inetOrgPerson</app-name>
 </class-name>

<!-- map NDS attribute Given Name to application attribute-->
<!-- givenName for class User -->

 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>givenName</app-name>
 </attr-name>

<!-- map NDS attribute Surname to application attribute -->
<!-- sn for all classes that don’t have a -->
<!-- class-specific mapping -->

 <attr-name>
 <nds-name>Surname</nds-name>
 <app-name>sn</app-name>
 </attr-name>
</attr-name-map>

For another example, see the mapping_rule.xml file used by the VRTest driver.

8.2 Matching Rule Elements
Matching rules establish links between an entry in eDirectory and an entry in the external
application. If a match is successful, an association between the two entries is created.

The <matching-rules> element can contain more than one matching rule. When multiple rules are
specified, the DirXML engine applies the rules in the order listed. The rules produce one of the
following results:

• One match. If exactly one match is found, the entry in the source is associated with the entry in
the destination. The DirXML engine reconciles attribute values for the attributes included in
the driver filter.

• Multiple matches. If more than one match is found, the DirXML engine signals an error
condition. The system administrator must either manually associate the entry or modify the
matching rules to be more specific.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
• No match. If no match is found, the DirXML engine continues to process the add operation by
applying the create rules.

The names of the attributes and classes in the matching rules are in the eDirectory name space.

The DirXML engine queries the destination for entries that match the subject of an <add> element.

• For the subscriber channel, the source is eDirectory and the destination is the external
application.

• For the publisher channel, the source is the external application and the destination is
eDirectory.

The input document is transformed so that the DirXML engine can inspect the results of the query.
Each channel has its own transformation process.

Subscriber Channel Transformation. If the results of a query indicate one or more successful
matches with application entries, the transformation adds an <association> element as a child of the
<add> element for each matched application entry. Each <association> element contains the unique
key for the application entry, a key that the DirXML driver supplies.

If the results of the query indicate no successful match was found, the absence of an <association>
element in the output document signals the DirXML engine that no match was found.

If the engine discovers multiple <association> elements as children of an <add> element after it has
applied the matching rules, it signals an error and does not allow the add operation to proceed.

Publisher Channel Transformation. If the results of the query indicate a single successful match,
the transformation adds a dest-dn attribute to the <add> element. The dest-dn attribute's value is the
distinguished name of the matching eDirectory object. If one of the following error conditions occur,
the transformation places a Unicode character in the dest-dn attribute:

• If multiple matches are found, 0xfffd is placed in the attribute.
• If a match is found with an eDirectory object that is already associated with an object in the

application, 0xfffc is placed in the attribute.

If the engine discovers either special Unicode character in the dest-dn attribute after the matching
rules have been applied, the engine signals an error and the add operation is aborted.

The Unicode characters 0xfffd and 0xfffc are represented in an XML style sheet using XML
character references (� and ￼, respectively).

XML Matching Rule Syntax. Matching rules use the following elements to determine whether
entries match:

• <match-class>. Specifies that the entry must match the specified base class. For example, the
entry must belong to the User class.

• <match-attr>. Specifies that the entry must have values for the specified attributes, and if
values are specified, the attributes must have the specified values. For example, the entry must
have Surname, Given Name, and Telephone Number attributes that match the target entry's
values.

• <match_path>. Specifies that a portion of the entry's DN must match the specified path in the
prefix attribute. For example, the entry must come from the provo.novell container when the
source directory contains the following containers: sales.provo.novell, dev.provo.novell,
hr.orem.novell.
Rule Reference 207

208 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<matching-rules>
Specify which class and attribute values must match for an entry in eDirectory to match an entry in
the external application.

Description
Matching rules establish links between an entry in eDirectory and an entry in the external
application. If a match is successful, an association between the two entries is created.

The DirXML engine uses the matching rules when it receives an add operation from either the
publisher or the subscriber. The DirXML engine changes a modify operation to an add operation
when an entry does not have an association. Matching rules are applied before the create rules.

Definition
<!ELEMENT matching-rules (matching-rule*)>

<!ELEMENT matching-rule (match-class*,
 match-path?,
 match-attr*)>
<!ATTLIST matching-rule
 description CDATA #IMPLIED>

<!ELEMENT match-class EMPTY>
<!ATTLIST match-class
 class-name CDATA #REQUIRED>

<!ELEMENT match-path EMPTY>
<!ATTLIST match-path
 prefix CDATA #REQUIRED>

<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

Elements
<matching-rule> (page 210)

Specifies the criteria for finding a matching entry in the destination.

<match-attr> (page 212)
Specifies an attribute value that the entry must match.

<match-class> (page 213)
Specifies the base class the entry must match before the rule can be used.

<match-path> (page 214)
Specifies the root container of the directory that the entry must match.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Parent
Top element

Examples
The following sample has three rules. The first rule requires User entries to match on both the
Surname and Given Name attributes. The second rule, which is applied if the first rule fails, requires
that the entries match on the Surname attribute. If both these rules fail, entries are match on their CN
attribute.

The following example illustrates three matching rules.

<matching-rules>

<!-- for Users, first try to match on Surname, Given Name -->
<!-- and Location -->

 <matching-rule>
 <match-class class-name="User"/>
 <match-attr attr-name="Surname"/>
 <match-attr attr-name="Given Name"/>
 <match-attr attr-name="Location"/>
 </matching-rule>

<!-- for Users, then try to match on Surname only in -->
<!-- the o=novell subtree -->

 <matching-rule>
 <match-class class-name="User"/>
 <match-path prefix="o=novell"/>
 <match-attr attr-name="Surname"/>
 </matching-rule>

<!-- for all classes try to match on CN only -->

 <matching-rule>
 <match-attr attr-name="CN"/>
 </matching-rule>
</matching-rules>

For another example, see the sub_matching_rule.xml file used by the subscriber for the VRTest
driver.
Rule Reference 209

210 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<matching-rule>
Specifies the criteria for finding a matching entry in the destination.

Description
The DirXML engine uses the following algorithm to determine if the add operation can use a
particular matching rule.

1. If the rule contains <match-class> elements, the class-name attribute in the add operation must
match one of the class-names specified in the <match-class> elements.

2. If the rule contains <match-attr> elements, the add operation must contain an attribute value for
each of the attributes specified in the <match-attr> elements.

If a rule cannot be used, it is skipped, and the DirXML engine moves to the next rule.

Once a suitable rule is found, the DirXML engine queries the destination for entries that have the
attributes specified by the <match-attr> elements in the matching rule and by the <add-attr>
elements in the add operation. If the rule contains a <match-path> element, the DirXML engine uses
that value to set the dest-dn attribute in the <query> element (this attribute specifies the starting
point for the search).

The destination returns <instance> elements for each entry that matches.

Definition
<!ELEMENT matching-rule (match-class*,
 match-path?,
 match-attr*)>
<!ATTLIST matching-rule
 description CDATA #IMPLIED>

Attributes
description

Provides a description of the rule for display in the ConsoleOne snapin.

Elements
<match-attr> (page 212)

Specifies an attribute value that the entry must match.

<match-class> (page 213)
Specifies the base class the entry must match before the rule can be used.

<match-path> (page 214)
Specifies the root container of the directory that the entry must match.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
Parent
<matching-rules> (page 208)
Rule Reference 211

212 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<match-attr>
Specifies an attribute for create, placement, and matching rules.

Description
When the <match-attr> element is specified in a <create-rule> or <placement-rule> element, at least
one value must be specified.

When the <match-attr> element is specified in a <matching-rule> element, it must not contain a
value.

Definition
<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the attribute in the eDirectory name space.

Elements
<value>

Specifies the value for the attribute.

Parent
<create-rule> (page 218)
<matching-rule> (page 210)
<placement-rule> (page 227)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<match-class>
Specifies the base class that an entry must match

Definition
<!ELEMENT match-class EMPTY>
<!ATTLIST match-class
 class-name CDATA #REQUIRED>

Attributes
class-name

Specifies the base class in the eDirectory name space.

Parent
<matching-rule> (page 210)
<placement-rule> (page 227)
Rule Reference 213

214 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<match-path>
Specifies a subtree in the directory that is used in matching the entry.

Description
When the <match-path> element is specified in a <matching-rule> element, the prefix attribute is
used to specify the starting point of the <query> element that is generated from the matching rule.
The name space of the prefix is the destination of the add operation.

The format of the prefix is dependent upon the name space.

• For eDirectory, the format is slash, for example, \treename\container\container. If the leading
slash is omitted, the path is assumed to be relative to the tree root.

• For the external application, the format is application dependent and must be documented by
the driver writer for the system administrator.

Definition
<!ELEMENT match-path EMPTY>
<!ATTLIST match-path
 prefix CDATA #REQUIRED>

Attributes
prefix

Specifies the distinguished name of a subtree in the directory.

Parent
<matching-rule> (page 210)
<placement-rule> (page 227)

8.3 Create Rule Elements
Create rules perform transformations only on <add> elements. They are only applied if a match is
not found by the matching rules. The transformation can remove (veto) elements or add data.

Vetoing elements. The transformation compares the <add> elements against criteria and removes
the <add> elements that don't meet the criteria.

Adding data. The transformation can synthesize attribute values from another attribute. For
example, the eDirectory Surname and Given Name attributes can be synthesized from an
application's Full Name attribute.

Also, a create rule can set an initial password for an entry. To set the initial password, the create rule
style sheet adds a <password> element as a child of the <add> element. The PCDATA content of the
<password> element is the initial password value for the entry. The <password> element can only be
added through a style sheet.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The DirXML engine supports the <password> element for entries created in eDirectory from the
publisher channel. DirXML drivers are encouraged to support the <password> element on the
subscriber channel. For an example, see Section 9.7, “Creating a Password Example: Create Rule,”
on page 246.

XML Create Rule Syntax. Create rules use the following elements to veto <add> elements or to
add data.

• <required-attr>. Specifies that the add command must have values for all of the listed
attributes, or the add fails. The rule can supply a default value for a required attribute. If a
default value is supplied, the transformation uses the following process:

• If the add command does not have a value for such an attribute, the entry is given the
default value.

• If the add command has a value for such an attribute, the default value is ignored and the
entry is given the value specified in the add command.

• <match-attr>. Specifies that the add command must contain an attribute value for each of the
attributes specified, or the add fails.

• <template>. Specifies the distinguished name of a template object in the destination directory
which supplies default values for a group of attributes. For example, the template can ensure
that an entry which is being created in eDirectory from an application has the same password
restrictions as other eDirectory entries.

You can have multiple create-rule elements in the file. Each rule is processed in the order that it
appears. If no applicable rule is found, the add is allowed.
Rule Reference 215

216 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<create-rules>
Determine whether a new entry can be created in the destination as a result of an add operation in the
source.

Description
The create rules specify the conditions for creating a new entry in either eDirectory or external
application. The create rules are kept in an DirXML-Rule object and associated with your driver
through the DirXML-CreateRule attribute of your driver's DirXML-Publisher and DirXML-
Subscriber objects. Both the subscriber and publisher can have their own rules, or they can share the
same rules.

For the subscriber rules, the source is eDirectory and the destination is the external application. For
the publisher rules, the source is the external application and the destination is eDirectory.

The DirXML engine applies create rules only after applying any existing matching rules, and these
matching rules fail to find a matching entry in the destination.

Create rules should complement the matching rules. Usually a create rule should require all the
attributes used by a matching rule. This defers the creation of an entry until enough is known about
an entry to perform a reasonable match in the receiving application.

Definition
<!ELEMENT create-rules (create-rule)*>

<!ELEMENT create-rule (match-attr*,
 required-attr*,
 template?) >
<!ATTLIST create-rule
 class-name CDATA #IMPLIED
 description CDATA #IMPLIED>

<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT required-attr (value)*>
<!ATTLIST required-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT template EMPTY>
<!ATTLIST template
 template-dn CDATA #REQUIRED>

Elements
<create-rule> (page 218)

Specifies the criteria for creating a new entry in the destination.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<match-attr> (page 220)
Specifies attribute values the entry must have to be created.

<required-attr> (page 221)
Specifies the attributes that the entry must have to be created.

<template> (page 222)
Specifies the distinguished name of the template to use when creating the entry.

Parent
Top element

Sample Create Rules
The following example illustrates two create rules.

<create-rules>
<!-- For all Users in the Defense organization require -->
<!-- Given Name, Surname, and Security Clearance. -->
<!-- Create using the templates\Secure User template. -->

 <create-rule class-name="User">
 <match-attr attr-name="OU">
 <value>Defense</value>
 </match-attr>
 <required-attr attr-name="Given Name"/>
 <required-attr attr-name="Surname"/>
 <required-attr attr-name="Security Clearance"/>

 <template template-dn="templates\Secure User"/>
 </create-rule>

<!-- For all other Users require Given Name and Surname. -->
<!-- Default the value of Security Clearance to None -->
<!-- Don’t use a template for creation -->

 <create-rule class-name="User">
 <match-attr attr-name="OU">
 <value>Defense</value>
 </match-attr>
 <required-attr attr-name="Given Name"/>
 <required-attr attr-name="Surname"/>
 <required-attr attr-name="Security Clearance">
 <value>None</value>
 </required-attr>
 </create-rule>
</create-rules>

For another example, see the sub_create_rule.xml file used by the subscriber in the VRTest driver.
Rule Reference 217

218 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<create-rule>
Specifies the criteria for creating a new entry in the destination of an add operation.

Description
The DirXML engine uses the following algorithm to determine if the add operation can use a
particular create rule:

1. If a class-name attribute is specified in the <create-rule> element, the class-name attribute in
the add operation must match the class-name attribute in the <create-rule> element.

2. If <match-attr> elements are specified in the <create-rule> element, the add operation must
contain an attribute value for each of the attributes specified in the <match-attr> elements.

If a rule cannot be used, it is skipped, and the DirXML engine moves to the next rule.

Once a suitable rule is found, the DirXML engine evaluates the add operation to see if it has values
for all the <required-attr> elements that do not have default values.

• If the add operation does not have values for all the <required-attr> elements and the create rule
does not supply default values for these attributes, the add operation fails.

• If the add operation has all the required values but is missing some of the default values, the
DirXML engine fills in the missing default values.

If a <template> element is specified, the template-dn attribute of the <add> element is filled in.

If not applicable rule is found, the add is allowed.

Definition
<!ELEMENT create-rule (match-attr*,
 required-attr*,
 template?) >
<!ATTLIST create-rule
 class-name CDATA #IMPLIED
 description CDATA #IMPLIED>

Attributes
class-name

Specifies the base class that this rule applies to. If no base class is specified, the rule applies to
all classes. The name is specified in the eDirectory name space.

description
Provides a description of the rule for display in the ConsoleOne snapin.

Elements
<match-attr> (page 220)

Specifies an attribute value that the entry must match in order for the rule to be selected.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<required-attr> (page 221)
Specifies the attributes that the entry must have. Default values for the attributes may be
specified.

<template> (page 222)
Specifies the distinguished name of template to use in creating the entry. The name is specified
in the destination name space.

Parent
<create-rules> (page 216)
Rule Reference 219

220 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<match-attr>
Specifies an attribute for create, placement, and matching rules.

Description
When the <match-attr> element is specified in a <create-rule>, at least one value must be specified.

Definition
<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the attribute in the eDirectory name space.

Elements
<value> (page 200)

Specifies the value for the attribute.

Parent
<create-rule> (page 218)
<matching-rule> (page 210)
<placement-rule> (page 227)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<required-attr>
Specifies an attribute that is required to create an entry.

Description
The <required-attr> element may contain one or more <value> elements.

• When the <required-attr> element contains one or more <value> elements and the <add>
element does not specify that attribute, the values are used as default values.

• When the <required-attr> element contains no values, the <add> element must contain one or
more value for the specified attribute.

Definition
<!ELEMENT required-attr (value)*>
<!ATTLIST required-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the required attribute. The name is specified in the eDirectory name
space.

Elements
<value> (page 200)

Specifies a default value for the attribute.

Parent
<create-rule> (page 218)
Rule Reference 221

222 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<template>
Specifies the template to use when creating the entry.

Description
A template is used to specify default attribute values for all entries created in a container in the
directory. For example, an eDirectory template usually specifies such attributes as minimum
password length and password expiration interval.

Definition
<!ELEMENT template EMPTY>
<!ATTLIST template
 template-dn CDATA #REQUIRED>

Attributes
template-dn

Specifies the distinguished name of the template in the destination name space.

Parent
<create-rule> (page 218)

8.4 Placement Rule Elements
Placement rules transform only <add> elements, and are only applied if the <add> element was not
vetoed by the create rules. Placement rule transformations fill in the dest-dn attribute of the <add>
element, placing the entry in the directory hierarchy and supplying the entry's distinguished name.

Publisher Channel Transformation. Placement rules are required to create an entry in eDirectory.
They generate the distinguished name for the dest-dn attribute. If they fail to generate a value for the
dest-dn attribute, the entry is not created in eDirectory.

The publisher channel supports two formats for the dest-dn attribute:

• Slash—for example, \tree_name\container\entry
• Qualified slash—for example, \T=tree name \O=container \OU=container \CN=entry

If the leading backslash is omitted, the distinguished name is considered to be relative to the root of
the eDirectory tree that is hosting DirXML.

Subscriber Channel Transformation. Placement rules may or may not be required to create
entries in the external application. If the external application has a hierarchical format, placement
rules should probably be required. The driver and the application determine the format of the dest-dn
attribute.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
XML Placement Rule Syntax. Placement rules support the following elements to determine
whether the rule should be used to place an entry:

• <match-class> If the rule contains any match class elements, the base class of the entry must
match the class-name attribute in the rule. If the match fails, the placement rule is not used for
that record.

• <match-attr> If the rule contains any match attribute elements, the record must contain an
attribute value for each of the attributes specified in the match attribute element. If the match
fails, the placement rule is not used for that record.

• <match-path> If the rule contains any match path elements, a portion of the record's DN must
match the prefix attribute specified in the match path element. If the match fails, the placement
rule is not used for that record.

The <placement> element in the rule specifies where to place the entry.

You can have multiple placement-rule elements in the file. Each rule is processed in the order that it
appears. If an entry does not match any of the rules, the dest-dn attribute of the add operation is left
blank.
Rule Reference 223

224 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<placement-rules>
Generate distinguished names for new entries.

Description
The placement rules specify where a new entry is created in the destination. Both the subscriber and
publisher can have their own rules, or they can share the same rules. The placement rules are kept in
an DirXML-Rule object and associated with your driver through the DirXML-PlacementRule
attribute of your driver's DirXML-Publisher and DirXML-Subscriber objects.

Definition
<!ELEMENT placement-rules (placement-rule*)>
<!ATTLIST placement-rules
 src-dn-format (%dn-format;) "slash"
 dest-dn-format (%dn-format;) "slash"
 src-dn-delims CDATA #IMPLIED
 dest-dn-delims CDATA #IMPLIED>

<!ELEMENT placement-rule (match-class*,
 match-path*,
 match-attr*,
 placement)>
<!ATTLIST placement-rule
 description CDATA #IMPLIED>

<!ELEMENT match-class EMPTY>
<!ATTLIST match-class
 class-name CDATA #REQUIRED>

<!ELEMENT match-path EMPTY>
<!ATTLIST match-path
 prefix CDATA #REQUIRED>

<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT placement (#PCDATA |
 copy-name |
 copy-attr |
 copy-path |
 copy-path-suffix)* >

Attributes
dest-dn-delims

Specifies the format of the destination dn when the dest-dn-format is empty. See the table
below for the defined character set.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
dest-dn-format
Specifies the format of the destination dn (dot, qualified dot, slash, qualified-slash, or ldap)
when the des-dn-delims attribute is empty.

src-dn-delims
Specifies the format of the source dn when the src-dn-format is empty. See the table below for
the defined character set.

src-dn-format
Specifies the format of the source dn (dot, qualified dot, slash, qualified-slash, or ldap) when
the src-dn-delims attribute is empty.

Only one of the attributes for formats can specify a value, either dest-dn-delims or dest-dn-format,
but not both.

The format for eDirectory is always slash.

The format for the external application must be what the application uses. Most applications should
be able to use one of the values specified for the *-dn-format attributes. If these are not adequate, the
*-dn-delims attributes accept up to eight characters with the following meanings:

If the RDN delimiter and the Relative RDN delimiter are the same character, the orientation of the
name is root right; otherwise, the orientation is root left.

Elements
<placement-rule> (page 227)

Specifies the criteria for selecting an entry and for generating the distinguished name.

<match-attr> (page 229)
Specifies attribute values the entry must match to use this placement rule.

<match-class> (page 230)

Character Number Description

#1 Typed Name Boolean Flag: 0 means names are not typed, 1 means names are
typed.

#2 Unicode No-Map Character Boolean Flag: 0 means don't output or interpret
unmappable unicode characters as escaped hex digit strings, for example, \FEFF.
eDirectory does not accept the following unicode characters: 0xFEFF, 0xFFFE,
0xFFFD, and 0xFFFF.

#3 Relative RDN delimiter.

#4 RDN delimiter.

#5 Name divider.

#6 Name value delimiter.

#7 Wildcard character.

#8 Escape character.
Rule Reference 225

226 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Specifies the base class the entry must match to use this placement rule.

<match-path> (page 231)
Specifies the root container the entry's dn must match to use this placement rule.

<placement> (page 232)
Specifies where the entry is placed when it matches all the placement criteria.

Parent
Top element

Sample Placement Rules
The following example shows three placement rules.

<placement-rules src-dn-format="slash" dest-dn-format="ldap" >
<!-- for Users coming from the subtree \Tree\novell in NDS -->
<!-- place them in the same relative hierarchy -->
<!-- under o=novell -->

 <placement-rule>
 <match-class class-name="User"/>
 <match-path prefix="\TREE\novell"/>
 <placement><copy-path-suffix/>,o=novell</placement>
 </placement-rule>

<!-- for all other users and groups -->
<!-- place them in the department container under novell -->

 <placement-rule>
 <match-class class-name="User"/>
 <match-class class-name="Group"/>
 <placement>cn=<copy-name/>,ou=<copy-attr
 attr-name="OU"/>,o=novell</placement>
 </placement-rule>

<!-- for everything else, try to mirror the hierarchy -->

 <placement-rule>
 <placement><copy-path/></placement>
 </placement-rule>
</placement-rules>

For another example, see the pub_placement_rule.xml file used by the publisher in the VRTest
Driver.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<placement-rule>
Specifies the criteria for generating a distinguished name for a new entry.

Description
The DirXML engine uses the following algorithm to determine if the add operation can use a
particular placement rule.

1. If the rule contains any <match-class> elements, the class-name attribute in the add operation
must match one of the class-names specified in the <match-class> elements.

2. If the rule contains any <match-attr> elements, the add operation must contain an attribute
value for each of the attributes specified in the <match-attr> elements.

3. If the rule contains a <match-path> element, the src-dn of the add operation must match one of
the subtrees specified by the <match-path> element.

If a rule cannot be used, it is skipped, and the DirXML engine moves to the next rule.

Once a suitable rule is found, the DirXML engine uses the <placement> element to generate a value
for the dest-dn attribute for the add operation. If no suitable rule is found, the dest-dn attribute of the
add operation is left blank.

Definition
<!ELEMENT placement-rule (match-class*,
 match-path*,
 match-attr*,
 placement)>
<!ATTLIST placement-rule
 description CDATA #IMPLIED>

Attributes
description

Provides a description of this placement rule for display by ConsoleOne.

Elements
<match-attr> (page 229)

Specifies attribute values the entry must match to use this placement rule.

<match-class> (page 230)
Specifies the base class the entry must match to use this placement rule.

<match-path> (page 231)
Specifies the root container the entry's dn must match to use this placement rule.

<placement> (page 232)
Specifies where the entry is placed when it matches all the placement criteria.
Rule Reference 227

228 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Parent
<placement-rules> (page 224)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<match-attr>
Specifies an attribute for create, placement, and matching rules.

Description
When the <match-attr> element is specified in a <placement-rule> element, at least one value must
be specified.

Definition
<!ELEMENT match-attr (value)+ >
<!ATTLIST match-attr
 attr-name CDATA #REQUIRED>

Attributes
attr-name

Specifies the name of the attribute in the eDirectory name space.

Elements
<value> (page 200)

Specifies the value for the attribute.

Parent
<create-rule> (page 218)
<matching-rule> (page 210)
<placement-rule> (page 227)
Rule Reference 229

230 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<match-class>
Specifies the base class that an entry must match.

Definition
<!ELEMENT match-class EMPTY>
<!ATTLIST match-class
 class-name CDATA #REQUIRED>

Attributes
class-name

Specifies the base class in the eDirectory name space.

Parent
<matching-rule> (page 210)
<placement-rule> (page 227)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
<match-path>
Specifies a subtree in the directory that is used in matching the entry.

Description
When the <match-path> element is specified in a <placement-rule> element, the prefix attribute is
compared to the src-dn attribute of the <add> element. The entry matches if the entry is in the
subtree specified by the prefix. The name space of the prefix is the source of the add operation.

The format of the prefix is dependent upon the name space.

• For eDirectory, the format is slash, for example, \treename\container\container. If the leading
slash is omitted, the path is assumed to be relative to the tree root of the eDirectory server that
is hosting DirXML.

• For the external application, the format is application dependent and must be documented by
the driver writer for the system administrator.

Definition
<!ELEMENT match-path EMPTY>
<!ATTLIST match-path
 prefix CDATA #REQUIRED>

Attributes
prefix

Specifies the distinguished name of a subtree in the directory.

Parent
<matching-rule> (page 210)
<placement-rule> (page 227)
Rule Reference 231

232 NDK: Novel

novdocx (E
N

U
) 01 February 2006
<placement>
Specifies the distinguished name for the new entry.

Description
The dn is generated by concatenating together, in order, the text and the specified <elements>. Any
leading or trailing white space is removed unless it is enclosed by a CDATA section.

Definition
<!ELEMENT placement (#PCDATA |
 copy-name |
 copy-attr |
 copy-path |
 copy-path-suffix)* >

<!ELEMENT copy-attr EMPTY>
<!ATTLIST copy-attr
 attr-name CDATA #REQUIRED>

<!ELEMENT copy-name EMPTY>

<!ELEMENT copy-path EMPTY>

<!ELEMENT copy-path-suffix EMPTY>

Attributes for <copy-attr>
attr-name

Specifies the attribute name.

Elements
<copy-name>

Specifies that the rdn of the src-dn attribute from the <add> element is copied and used as part
of the dn. If the <copy-name> element is specified and the src-dn in the <add> element is
empty, the placement rule is skipped.

<copy-attr>
Specifies that the first value of the attribute specified by attr-name is copied from the <add>
element and used as part of the destination dn. If the attribute does not exist in the <add>
element, the placement rule is skipped.
Structured attribute types are not supported.

<copy-path>
Specifies that the src-dn attribute from the <add> element is copied to be used as the
destination dn. The DirXML engine used the src-dn-format and dest-dn-format attributes to
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
convert the name to the proper format. Conversion from typeless format to a typed format is
unsupported unless the source is eDirectory.

<copy-path-suffix>
Specifies that only a portion of the src-dn attribute from the <add> element is copied to be used
as the destination dn. The portion of the src-dn attribute that matches the <match-path> element
is stripped from the name. If no <match-path> element is specified, the whole src-dn is copied.
The DirXML engine used the src-dn-format and dest-dn-format attributes to convert the name
to the proper format. Conversion from typeless format to a typed format is unsupported unless
the source is eDirectory.

Parent
<placement-rule> (page 227)

8.5 Event Transformation Rules
Event transformation rules change an event from one type to another. They are processed in a
slightly different order according to the channel, but the names of the attributes and classes are in the
eDirectory name space.

There are no required transformations that an event transformation style sheet must perform. They
can be used for the following:

• Another XML element. For example, it can change a <delete> element to a <remove-
association> element.

• An XML element to an external application element. For example, if the external application
has an XML interface, the <add> element could be converted to the external application's XML
<create> element. This type of transformation can only be done for the subscriber as
commands come from the DirXML engine and the driver passes them to the external
application.

• An external application element to an eDirectory XML element. For example, if the external
application has an XML interface, the external application's XML <create> element could be
converted to the <add> element. This type of transformation can only be done for the publisher
as events come from the external application and the driver passes them to the DirXML engine.

• Additional elements. For example, an <add> element could be split into an <add> and a
<modify> element.

• Remove elements. For example, <add> and <modify> elements could be combined into just an
<add> element.

• Custom command. If the external application does not have an XML interface, the XML
elements could be transformed directly to a function or method from the application's interface.

The DirXML engine processes the event transformation rule according to the channel:

• For the subscriber channel which sends events from eDirectory to the driver, the engine applies
the event transformation rules before any of the other rules or output style sheets.

• For the publisher channel which sends events from the driver to the engine, the engine applies
the event transformation after the input transformation rules and the schema mapping rules, but
before the matching, create, and placement rules.
Rule Reference 233

234 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The event transformation rules are kept in an DirXML-Rule object and associated with your driver
through the DirXML-EventTransformationRule attribute of your driver's DirXML-Publisher and
DirXML-Subscriber objects.

8.5.1 Sample Event Transformation Rule
The following sample is and event transformation for the subscriber channel that limits the scope of
events.

<?xml version="1.0" encoding="UTF-8"?><!--
 This stylesheet is and event transformation for the
 subscriber channel that limits the scope of events.
-->
<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

 <xsl:template match="input/*[@src-dn]">
 <xsl:variable name="src-dn" select="string(@src-dn)"/>
 <xsl:if test="starts-with($src-dn,’\TREE\novell\Provo\’) or
 starts-with($src-dn,’\TREE\novell\San Jose\’) or
 starts-with($src-
dn,’\TREE\novell\Orem\’) or
 starts-with($src-
dn,’\TREE\novell\Unknown Location\’) ">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:if>
 </xsl:template>

<!-- identity template for everything we don’t specifically handle -->
 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

</xsl:transform>

8.6 Command Transformation Rules
Command Transformation Rules provide final processing on commands before the commands are
sent to eDirectory or the application

There are no required transformations that a command transformation style sheet must perform.
They can be used for the following:

• Another XML element. For example, it can change a <delete> element to a <remove-
association> element.

• An XML element to an external application element. For example, if the external application
has an XML interface, the <add> element could be converted to the external application's XML
<create> element. This type of transformation can only be done for the subscriber as
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
commands come from the DirXML engine and the driver passes them to the external
application.

• An external application element to an eDirectory XML element. For example, if the external
application has an XML interface, the external application's XML <create> element could be
converted to the <add> element. This type of transformation can only be done for the publisher
as events come from the external application and the driver passes them to the DirXML engine.

• Additional elements. For example, an <add> element could be split into an <add> and a
<modify> element.

• Remove elements. For example, <add> and <modify> elements could be combined into just an
<add> element.

• Custom command. If the external application does not have an XML interface, the XML
elements could be transformed directly to a function or method from the application's interface.

The DirXML engine processes the command transformation rule according to the channel:

• For the subscriber channel which sends events from eDirectory to the driver, the engine applies
the command transformation rules directly before the Schema Mapping Rule. Both the Schema
Mapping Rule and the Output Transformation are executed after the Command Transformation
Rule on the Subscriber channel.

• For the publisher channel which sends events from the driver to the engine, the engine applies
the command transformation after all other rules, directly before the DirXML engine applies
the commands in the command document to eDirectory.

The command transformation rules are kept in an DirXML-Rule object and associated with your
driver through the DirXML-CommandTransformationRule attribute of your driver's DirXML-
Publisher and DirXML-Subscriber objects.

8.6.1 Sample Command Transformation Rules
The following sample is a command transformation for the publisher channel that causes a change
of location in the application to trigger a move in eDirectory.

<?xml version="1.0"?>
<!--
 This stylesheet is a command transformation for the publisher
 channel that causes a change of location in the application
 to trigger a move in eDirectory.
-->

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

 <xsl:template match="modify[modify-attr[@attr-name = ’L’]]">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 <xsl:variable name="location" select="string(modify-
attr[@attr-name = ’L’]/add-value/value)" />
 <xsl:variable name="target">
 <xsl:choose>
 <xsl:when test="$location=’San Jose’ or
Rule Reference 235

236 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 $location=’Orem’ or
 $location=’Provo’">
 <xsl:value-of select="$location"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="’Unknown
Location’"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <move dest-dn="{@dest-dn}">
 <parent dest-dn="novell\{$target}"/>
 </move>
 </xsl:template>

<!-- identity template for everything we don’t specifically handle -->

 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

</xsl:transform>

8.7 Input Transformation Style Sheets
Input transformation rules perform any pre-processing of XML issued from the driver to the
DirXML engine. This is a good place to perform data format mapping, for example changing a
15.2.1965 format for a birth date to a 2/15/65 format.

The input transformation rules are applied before the schema mapping transformation so the names
of the attributes and classes are in the application's name space.

The style sheet can also be used for the following:

• Changing event types
• Generating extra events
• Removing events

There are no required transformations that an input transformation style sheet must perform.

The input transformation rule is stored in a DirXML-StyleSheet object and is linked to the driver
through the DirXML-InputTransform attribute of the driver's DirXML-Driver object.

8.8 Output Transformation Style Sheets
Output transformation rules perform any post-processing of XML issued from the DirXML engine
to the driver. This is a good place to perform data format mapping, for example changing a 2/15/65
format for a birth date to a 15.2.1965 format.

The output transformation rules are applied after the schema mapping transformation so the names
of the attributes and classes are in the application's name space.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
The style sheet can also be used for the following:

• Changing event types
• Generating extra events
• Removing events

There are no required transformations that an output transformation style sheet must perform.

The output transformation rule is stored in a DirXML-StyleSheet object and is linked to the driver
through the DirXML-OutputTransform attribute of the driver's DirXML-Driver object.
Rule Reference 237

238 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

9
novdocx (E

N
U

) 01 February 2006
9Style Sheets

Style sheets define XSLT transformation rules. The XSLT processor in the DirXML® engine is
compliant with the 16 November 1999 W3C Recommendation. For the specifications, see the
following:

• XSL Transformations (XSLT) (http://www.w3.org/TR/1999/REC-xslt-19991116)
• XML Path Language (XPath) (http://www.w3.org/TR/1999/REC-xpath-19991116)

Style sheets can be used in the following places:

• Input transformation rules
• Output transformation rules
• Event transformation rules
• Matching, create, or placement rules
• Mapping rules

The following sections describe the implementation specifics of using style sheets with DirXML.

• Section 9.1, “Restrictions,” on page 239
• Section 9.2, “Starting with an Identity Transformation,” on page 240
• Section 9.3, “Using the Parameters that DirXML Passes,” on page 240
• Section 9.4, “Using Extension Functions,” on page 243
• Section 9.5, “Testing Style Sheets Outside of DirXML,” on page 244
• Section 9.6, “Invoking the Novell XSLT Processor Directly,” on page 245
• Section 9.7, “Creating a Password Example: Create Rule,” on page 246
• Section 9.8, “Creating an eDirectory User Example: Create Rule,” on page 247

9.1 Restrictions
Three of the rule types (matching, create, and placement) can be also be XML documents. When
these rules are written as style sheets, they are subject to the following restrictions.

9.1.1 Matching Rule Restrictions
When matching rules are written as an XSLT style sheet, they are subject to the following
restrictions:

• Use the special value of a single Unicode character 0xFFFD to signal that multiple matches
were found.

• Can operate only on add events.
• On the subscriber channel, the DirXML driver must add an <association> element for any

matches that are found in the application.
• On the publisher channel, the DirXML driver must fill in the dest-dn attribute of the

<add> element if a match is found in eDirectoryTM.
Style Sheets 239

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

240 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• Can remove events
• Cannot generate extra events
• Cannot change event types

The names of the attributes and classes are in the eDirectory name space.

9.1.2 Create Rule Restrictions
When create rules are written as an XSLT style sheet, they are subject to the following restrictions:

• Can operate only on add events.
• Can add attributes and values to the <add> element.
• Can remove events (this is how an add event is vetoed).

The names of the attributes and classes are in the eDirectory name space.

9.1.3 Placement Rule Restrictions
When placement rules are written as an XSLT style sheet, they are subject to the following
restrictions:

• Can operate only on add events.
• Must fill in the dest-dn attribute of the <add> element.
• Can remove events.

The names of the attributes and classes are in the eDirectory name space.

9.2 Starting with an Identity Transformation
Unless you are translating to or from an XML format that is completely different from the DirXML
format, you will want to start your style sheet with templates that implement the identity
transformation. These templates allow the events in the document that you don’t specifically try to
intercept and change to pass through without any modifications.

The following two templates together implement the identity transformation:

<xsl:template match="/" >
 <xsl:apply-templates select="node()|@*"/>
</xsl:template>

<xsl:template match="node()|@*" >
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
</xsl:template>

9.3 Using the Parameters that DirXML Passes
The DirXML engine passes the rule style sheets the following parameters that the style sheet can
use. Note that with DirXML 1.1, the query processor parameters are now passed to the schema
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
mapping rules and the input and output transformation rules. The command processor parameters
are passed to all rules.

• fromNds—This is a boolean value that is true if the rule is being processed by the subscriber
channel and false if the rule is being processed by the publisher channel.

• srcQueryProcessor—This is a Java object that implements the XdsQueryProcessor interface.
This allows the style sheet to query the event source for more information.

• destQueryProcessor—This is a Java object that implements the XdsQueryProcessor interface.
This allows the style sheet to query the event target for more information.

• srcCommandProcessor—This is a java object that implements the XdsCommandProcessor
interface. This allows the stylesheet to "write-back" a command to the event source. Not
available in DirXML 1.0.

• destCommandProcessor-This is a java object that implements the XdsCommandProcessor
interface.This allows the stylesheet to issue a command to the command destination directly,
bypassing most other rules. Not available in DirXML 1.0.

To use these parameters include the following in your style sheet:

 <xsl:param name="fromNds"/>
 <xsl:param name="srcQueryProcessor"/>
 <xsl:param name="destQueryProcessor"/>
 <xsl:param name="srcCommandProcessor"/>
 <xsl:param name="destCommandProcessor"/>

With DirXML 1.1, processors will accept a query or command element as the top level element and
will wrap it in <input> and <nds> if necessary.

When using the query and command parameters with the schema mapping rules, input
transformation rules, and output transformation rules the following limitations apply:

1. Queries issued to the application shim must be in the form expected by the application shim. In
other words, schema names must be in the application namespace and the query must conform
to whatever XML vocabulary is used natively by the shim. No association refs will be added to
the query.

2. Responses from the application shim will be in the form returned by the shim with no
modification or schema mapping performed and no resolution of association refs.

3. Queries issued to NDS must be in the form expect by NDS. In other words schema names must
be in the NDS namespace and the query must be XDS. Association refs will not be resolved.

4. Responses from the application shim will be in the form returned by the shim with no
modification or schema mapping performed.

Query Processors

Use of the query processors depends on the Novell XSLT implementation of extension functions. To
make a query, you need to declare a name space for the XdsQueryProcessor interface. This is done
by adding the following to the <xsl:stylesheet> or <xsl:transform> element of the style sheet.

xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.XdsQueryProcessor"
Style Sheets 241

242 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The following example uses one of the query processors (the extra long lines are wrapped and do not
begin with a <):

<!-- Query object name queries NDS for the passed object -->
<!-- name. Ideally, this would not depend on "CN": to do -->
<!-- this, add another parameter that is the name of the -->
<!-- naming attribute. -->

<xsl:template name="query-object-name">
 <xsl:param name="object-name"/>

<!-- build an xds query as a result tree fragment -->
 <xsl:variable name="query">
 <nds ndsversion="8.5" dtdversion="1.0">
 <input>
 <query>
 <search-class class-name="{ancestor-or-self:
 :add/@class-name}"/>

<!-- NOTE: depends on CN being the naming attribute -->
 <search-attr attr-name="CN">
 <value><xsl:value-of select="$object-name"/
 ></value>
 </search-attr>
<!-- put an empty read attribute in so that we don’t get -->
<!-- the whole object back -->
 <read-attr/>
 </query>
 </input>
 </nds>
 </xsl:variable>

<!-- query NDS -->
<xsl:variable name="result" select="query:query($destQuery
 Processor,$query)"/>

<!-- return an empty or non-empty result tree fragment -->
<!-- depending on result of query -->
 <xsl:value-of select="$result//instance"/>
</xsl:template>

Command Parameters

In order to allow channel write-back for default attributes added by a create rule, a new XML
attribute called write-back was added to the <required-attr> element of the Create Rule. If present
and set to true, the create rule will call the srcCommandProcessor with a modify command to write
the default value back to the source.

The following example uses command parameters to perform a write back operation.

<?xml version="1.0"?>
<xsl:transform
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 xmlns:cmd="http://www.novell.com/nxsl/java
 com.novell.nds.dirxml.driver.XdsCommandProcessor"
>
<xsl:param name="srcCommandProcessor"/>

<xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="add">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>

<!-- on a user add, add Engineering department to the source
object -->

<xsl:variable name="dummy">
 <modify class-name="{@class-name} "dest-dn="{@src-dn}">
 <xsl-copy-of select="association"/>
 <modify-attr attr-name="OU">
 <add-value>
 <value type="string">Engineering</value>
 </add-value>
 </modify-attr>

</modify>
</xsl:variable>

 <xsl:variable name="dummy2"
 select="cmd:execute($srcCommandProcessor, $dummy)"/>
</xsl:template>

</xsl:transform>

9.4 Using Extension Functions
XSLT is an excellent tool for performing some kinds of transformations and a rather poor tool for
other types of transformations such as non-trivial string manipulation and iterative processes.
Fortunately the Novell XSLT processor implements extension functions which allow the style sheet
to call a function implemented in Java, and by extension, any other language that can be accessed
through JNI.

For specific examples, see the above example using the query processor, and the following example
that illustrates using Java for string manipulation (the extra long lines are wrapped and do not begin
with a <).

<!-- get-dn-prefix places the part of the passed dn that -->
<!-- precedes the last occurrence of ’\’ in the passed dn -->
<!-- in a result tree fragment meaning that it can be -->
<!-- used to assign a variable value -->

<xsl:template name="get-dn-prefix" xmlns:jstring="http://
 www.novell.com/nxsl/java/java.lang.String">
Style Sheets 243

244 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <xsl:param name="src-dn"/>

<!-- use java string stuff to make this much easier -->
 <xsl:variable name="dn" select="jstring:new($src-dn)"/>
 <xsl:variable name="index" select="jstring:lastIndexOf
 ($dn,’\’)"/>
 <xsl:if test="$index != -1">
 <xsl:value-of select="jstring:substring($dn,0,$index)
 "/>
 </xsl:if>
</xsl:template>

9.5 Testing Style Sheets Outside of DirXML
The XSLT process in the DirXML engine may be invoked from the command line and can be used
to test stylesheets in a more controlled environment before installing them into DirXML.

The following batch file may be used to invoke the XSLT processor on NT or Windows 2000.

@echo off
setlocal
rem TODO - edit the following line to point to directory where NDS and
DirXML are installed

set DIRXML_HOME=c:\novell\nds
set COMMON_JARS=%DIRXML_HOME%\lib%DIRXML_HOME%\jre\bin\java -
classpath%COMMON_JARS%\xp.jar; %COMMON_JARS%\collections.jar;
%COMMON_JARS%\nxsl.jar com.novell.xsl.nxsl %1 %2 %3 %4 %5 %6 %7 %8 %9

endlocal

Invoking the processor without any arguments prints out the latest information on the command
syntax for the processor.

To get sample XML to use as input to test your style sheet, use the tracing options (see Section 3.1,
“Using DSTrace and the DirXML Trace Log,” on page 95) and paste the appropriate XML into a
text file.

Since you are running outside of DirXML, the srcQueryProcessor and destQueryProcessor will not
be available. To get around this limitation, you can temporarily comment out code that uses the
query processor and replace it with an explicit assignment of the reply you might expect from the
query. For example:

<!-- query NDS -->
<!-- <xsl:variable name="result"
select="query:query($destQueryProcessor, $query)"/> -->

<!-- simulate query results -->

<xsl:variable name="result">
 <nds dtdversion="1.0" ndsversion="8.5">
 <output>
 <instance class-name="User" src-dn="\MY_TREE \MY_ORG\Fred"/>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <status event-id="" level="success"></status>
 </output>
 </nds>
<xsl:variable>

9.6 Invoking the Novell XSLT Processor Directly
Drivers can invoke the Novell XSLT processor directly by using the com.novell.xsl.StyleSheet
class. There are various ways in which this can be set up and invoked, but a typical invocation is
illustrated by the following code fragment.

import com.novell.nds.dirxml.driver.*;
import com.novell.xsl.*;
import com.novell.xsl.result.*;
import org.w3c.dom.*;
.
.
.
 try
 {
 XmlDocument inputDoc = new XmlDocument();
 XmlDocument stylesheetDoc = new XmlDocument();

 // load the input and stylesheet documents from a file
 inputDoc.readDocument(new FileInputStream("input.xml"));
 stylesheetDoc.readDocument(new
FileInputStream("stylesheet.xsl"));

 // create the stylesheet processor and give it the stylesheet
 Stylesheet styleSheet = new Stylesheet();
 styleSheet.load(stylesheetDoc.getDocument());

 // pass in any stylesheet parameters that the stylesheet might
need
 styleSheet.setParameter("fromNds", new Boolean(fromNds));

 // setup a result handler to get a DOM tree
 Document resultDoc =
com.novell.xml.dom.DocumentFactory.newDocument();
 DOMResultHandler resultHandler = new DOMResultHandler(resultDoc);
 styleSheet.setResultHandler(resultHandler);

 // apply the stylesheet
 styleSheet.process(doc, null);

 // result will be in resultDoc

 }
 catch(XSLException xsle)
 {
 // handle any exception thrown
 }
Style Sheets 245

246 NDK: Novel

novdocx (E
N

U
) 01 February 2006
9.7 Creating a Password Example: Create Rule
The following style sheet can be used for a create rule. It creates a user, generates a password for the
user from the user's Surname and CN attributes, and performs an identity transform (which passes
through everything in the document except the events you are trying to intercept and transform).

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- This stylesheet has an example of how to replace a create rule
with
 an XSLT stylesheet and supply an initial password for "User"
objects. -->

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform
 "version="1.0">

<!-- ensure we have required NDS attributes -->
<xsl:template match="add">
 <xsl:if test="add-attr[@attr-name=’Surname’] and
 add-attr[@attr-name=’CN’]">
 <!-- copy the add through -->
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <!-- add a <password> element -->
 <xsl:call-template name="create-password"/>
 </xsl:copy>
 </xsl:if>

<!-- if the xsl:if fails, we don’t have all the required attributes
 so we won’t copy the add through, and the create rule will veto
the add -->

</xsl:template>

<xsl:template name="create-password">
 <password>
 <xsl:value-of select="concat(add-attr[@attr-name=’Surname’]/
value,
 ’-’,add-attr[@attr-name=’CN’]/value)"/>
 </password>
</xsl:template>

<!-- identity transform for everything we don’t want to change -->

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

</xsl:transform>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
9.8 Creating an eDirectory User Example: Create
Rule
This style sheet can be used for a create rule. It shows how to create an eDirectory user from an
entry created in an external application. This example is based on the idea that a newly hired person
is first created in the Human Resources database and then on the network. It takes the user's first
name and last name and generates a unique CN in the eDirectory tree. Although eDirectory requires
the CN to be unique in only the container, this style sheet ensures that it is unique across all
containers in the eDirectory tree.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- This stylesheet is an example of how to replace a create rule
with an
 XSLT stylesheet and that creates the User name from the Surname
and
 given Name attributes -->

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.
 XdsQueryProcessor"
 >

<!-- This is for testing the stylesheet outside of DirXML so things
 are pretty to look at -->
<xsl:strip-space elements="*"/>
<xsl:preserve-space elements="value,component"/>
<xsl:output method="xml" indent="yes"/>

<!-- dirxml always passes two stylesheet parameters to an XSLT rule:
 an inbound and outbound query processor -->
<xsl:param name="srcQueryProcessor"/>
<xsl:param name="destQueryProcessor"/>

<!-- match <add> elements -->
<xsl:template match="add">

 <!-- ensure we have required NDS attributes we need for the name -->
 <xsl:if test="add-attr[@attr-name=’Surname’] and
 add-attr[@attr-name=’Given Name’]">

 <!-- copy the add through -->
 <xsl:copy>
 <!-- copy any attributes through except for the src-dn -->
 <!-- we’ll construct the src-dn below so that the placement
rule will work -->
 <xsl:apply-templates select="@*[string(.) != ’src-dn’]"/>

 <!-- call a template to construct the object name and place the
result in a variable -->
 <xsl:variable name="object-name">
Style Sheets 247

248 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <xsl:call-template name="create-object-name"/>
 </xsl:variable>

 <!-- now create the src-dn attribute with the created name -->
 <xsl:attribute name="src-dn">
 <xsl:variable name="prefix">
 <xsl:call-template name="get-dn-prefix">
 <xsl:with-param name="src-dn" select="string(@src-
dn)"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="concat($prefix,’\’,$object-name)"/>
 </xsl:attribute>

 <!-- if we have a "CN" attribute, set it to the constructed
name -->
 <xsl:if test="./add-attr[@attr-name=’CN’]">
 <add-attr attr-name="CN">
 <value type="string"><xsl:value-of select="$object-
name"/></value>
 </add-attr>
 </xsl:if>

 <!-- copy the rest of the stuff through, except for what we
have already copied -->
 <xsl:apply-templates select="*[name() != ’add-attr’ or @attr-
name != ’CN’] |
 comment() |
 processing-instruction() |
 text()"/>

 <!-- add a <password> element -->
 <xsl:call-template name="create-password"/>

 </xsl:copy>
 </xsl:if>
 <!-- if the xsl:if fails, it means we don’t have all the required
attributes
 so we won’t copy the add through, and the create rule will veto
the add -->
</xsl:template>

<!-- get-dn-prefix places the part of the passed dn that precedes the
-->
<!-- last occurrance of ’\’ in the passed dn in a result tree fragment
-->
<!-- meaning that it can be used to assign a variable value
-->
<xsl:template name="get-dn-prefix" xmlns:jstring="http://
www.novell.com/nxsl/java/java.lang.String">
 <xsl:param name="src-dn"/>

 <!-- use java string stuff to make this much easier -->
 <xsl:variable name="dn" select="jstring:new($src-dn)"/>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
 <xsl:variable name="index" select="jstring:lastIndexOf($dn,’\’)"/>
 <xsl:if test="$index != -1">
 <xsl:value-of select="jstring:substring($dn,0,$index)"/>
 </xsl:if>
</xsl:template>

<!-- create-object-name creates a name for the user object and places
the -->
<!-- result in a result tree fragment
-->
<xsl:template name="create-object-name">

 <!-- first try is first initial followed by surname -->
 <xsl:variable name="given-name" select="add-attr[@attr-name=’Given
Name’]/value"/>
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="prefix" select="substring($given-name,1,1)"/>
 <xsl:variable name="object-name" select="concat($prefix,$surname)"/
>

 <!-- then see if name already exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try 1st fallback, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-2"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>

<!-- create-object-name-2 is the first fallback if the name created by
-->
<!-- create-object-name already exists
-->
<xsl:template name="create-object-name-2">

 <!-- first try is first name followed by surname -->
 <xsl:variable name="given-name" select="add-attr[@attr-name=’Given
Name’]/value"/>
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="object-name" select="concat($given-
name,$surname)"/>
Style Sheets 249

250 NDK: Novel

novdocx (E
N

U
) 01 February 2006
 <!-- then see if name already exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try last fallback, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-fallback"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
 </xsl:choose>

</xsl:template>

<!-- create-object-name-fallback recursively tries a name created by
-->
<!-- concatenating the surname and a count until NDS doesn’t find
-->
<!-- the name. There is a danger of infinite recursion, but only if
-->
<!-- there is a bug in NDS -
->
<xsl:template name="create-object-name-fallback">
 <xsl:param name="count" select="1"/>

 <!-- construct the a name based on the surname and a count -->
 <xsl:variable name="surname" select="add-attr[@attr-
name=’Surname’]/value"/>
 <xsl:variable name="object-name" select="concat($surname,’-
’,$count)"/>

 <!-- see if it exists in NDS -->
 <xsl:variable name="exists">
 <xsl:call-template name="query-object-name">
 <xsl:with-param name="object-name" select="$object-name"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- if exists, then try again recursively, else return result -->
 <xsl:choose>
 <xsl:when test="$exists != ’’">
 <xsl:call-template name="create-object-name-fallback">
 <xsl:with-param name="count" select="$count + 1"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$object-name"/>
 </xsl:otherwise>
 </xsl:choose>
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
</xsl:template>

<!-- query object name queries NDS for the passed object-name. Ideally,
this would -->
<!-- not depend on "CN": to do this, add another parameter that is the
name of the -->
<!-- naming attribute.
-->
<xsl:template name="query-object-name">
 <xsl:param name="object-name"/>

 <!-- build an xds query as a result tree fragment -->
 <xsl:variable name="query">
 <nds ndsversion="8.5" dtdversion="1.0">
 <input>
 <query>
 <search-class class-name="{ancestor-or-self::add/@class-
name}"/>
 <!-- NOTE: depends on CN being the naming attribute -->
 <search-attr attr-name="CN">
 <value><xsl:value-of select="$object-name"/></value>
 </search-attr>
 <!-- put an empty read attribute in so that we don’t get
the whole object back -->
 <read-attr/>
 </query>
 </input>
 </nds>
 </xsl:variable>

 <!-- query NDS -->
 <xsl:variable name="result"
select="query:query($destQueryProcessor,$query)"/>

 <!-- return an empty or non-empty result tree fragment depending on
result of query -->
 <xsl:value-of select="$result//instance"/>
</xsl:template>

<!-- create an initial password -->
<xsl:template name="create-password">
 <password>
 <xsl:value-of select="concat(add-attr[@attr-name=’Surname’]/
value,’-’,add-attr[@attr-name=’CN’]/value)"/>
 </password>
</xsl:template>

<!-- identity transform for everything we don’t want to mess with -->
<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>
Style Sheets 251

252 NDK: Novel

novdocx (E
N

U
) 01 February 2006

</xsl:transform>
l Identity Manager (DirXML) Driver Kit

10
novdocx (E

N
U

) 01 February 2006
10DirXML Error Codes

The following is a list of DirXML® specific error codes:

Code Error

-300 VR_ERR_NO_JRE

-299 VR_ERR_JRE_LOAD_FAIL

-298 VR_ERR_JVM_INIT_FAIL

-297 VR_ERR_JVM_CREATE_FAIL

-296 VR_ERR_VRDRIVER_MISSING

-295 VR_ERR_VRDRIVER_CREATE_FAIL

-294 VR_ERR_VRDRIVER_INTERFACE_MISMATCH

-293 VR_ERR_MEMORY_ERR

-292 VR_ERR_FATAL

-291 VR_ERR_TIMEOUT

-290 VR_ERR_INVALID_COUNT

-289 VR_ERR_ALREADY_EXISTS

-288 VR_ERR_OPEN_COMM

-287 VR_ERR_CLOSE_COMM

-286 VR_ERR_PREEMPT_COMM
DirXML Error Codes 253

254 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

11
novdocx (E

N
U

) 01 February 2006
11Javadoc, FAQs, and DTD
Reference

The following link opens the DirXML® Driver Developer Kit reference material: DirXML
Reference (../ref/index.html)

The DirXML Driver Developer Kit reference material contains five sections:

• DirXML Javadoc. This section contains Javadoc for the DirXML Java APIs.
• C++ Reference. This section contains C++ Reference for the DirXML C++ APIs.
• XDS Libraries Javadoc. This section contains Javadoc for the XDS Libraries.
• XDS Libraries C++ Reference. This section contains C++ Reference for the XDS Libraries.
• XDS DTD and HTML Reference. This section contains a copy of the XDS DTD and HTML

DTD reference, which enables you to view DTD descriptions and hierarchy in HTML format.
Javadoc, FAQs, and DTD Reference 255

../ref/index.html
../ref/index.html

256 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

A
novdocx (E

N
U

) 01 February 2006
AVRTest Application

The VRTest application was created to test the DirXML® infrastructure and to provide an example
of a DirXML driver. It consists of four components:

• VRTestServer—a configurable server that acts as the external application. Configuration files
have been set up so that it can simulate either a flat or a hierarchical directory.

• VRTestClient—a client application that allows you to view and manipulate server data. From
this application, you can create, delete, and modify records. You can then watch these
modifications as they are synchronized into eDirectoryTM.

• VRTestAPI—the programming interface for communicating with the VRTestServer
application. Both vrtest_driver and VRTestClient use this interface. You can compare this
interface to the interface available from your external application to determine if your
application's interface contains the functionality required for a DirXML driver.

• vrtest_driver—the DirXML driver that connects eDirectory and the VRTestServer and allows
data to synchronize between the two. The vrtest_driver is available as sample code in C++ and
Java.

A.1 Requirements and Installation
The VRTestServer application requires a Win32 client or server running eDirectory 8.5 or higher. To
install the application and driver, follow the instructions in the VRTest section contained in Chapter
11, “Javadoc, FAQs, and DTD Reference,” on page 255. For general information on installing
drivers see the current Identity Manager documentation (http://www.novell.com/documentation/
idm/index.html).
VRTest Application 257

http://www.novell.com/documentation/idm/index.html

258 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

B
novdocx (E

N
U

) 01 February 2006
BDirXML Definitions for the Schema

This appendix defines the attribute and object class definitions that are created in the eDirectoryTM
schema to enable DirXML® drivers.

B.1 DirXML Object Class Definitions
To enable communication between the DirXML engine and the DirXML driver, three objects must
be created in eDirectory within the DirXML-DriverSet object when the driver is installed. If the
DirXML driver is the first DirXML driver installed in the eDirectory tree, you will need to create the
DirXML-DriverSet object. This object holds the DirXML-Driver object which holds the objects for
the publisher and the subscriber shims: DirXML-Subscriber and DirXML-Publisher.

By creating three objects for each DirXML driver, the administrator is allowed complete flexibility
in setting up the interaction between eDirectory and the external application. The following figure
illustrates the possible placement of these objects.

Figure B-1 Possible placement of DirXML objects

The figure shows the typical configuration with rules supplied for both shims. However, the shims
can share the same rules. The driver is associated with a rule object by storing the distinguished

Novell

XML-Sets MarketingEngineering

Notes Exchange NDS

[Root]

DirXML-DriverSet OU

O

OU

DirXML-Driver DirXML-Driver DirXML-Driver

ExSub

DirXML-Subscriber

Create

DirXML-Rule

Mapping

DirXML-Rule

InputTrans

DirXML-StyleSheet

DirXML-StyleSheet

OutputTrans

DirXML-StyleSheet

Match

Placement

DirXML-Rule

ExPub

DirXML-Publisher

CreateMatch

Placement

DirXML-Rule

DirXML-RuleDirXML-StyleSheet

Event Event

DirXML-StyleSheet DirXML-StyleSheet
DirXML Definitions for the Schema 259

260 NDK: Novel

novdocx (E
N

U
) 01 February 2006
name of the rule in one of the driver's attributes (one exists for each type of rule). Shims share the
same rule by having the same distinguished name of the rule object in the attribute for that type of
rule.

The shims can also have rules which transform events from one event to another. The event rules on
the subscriber transform an eDirectory event into an event for the external application. The event
rules on the publisher transform an external application event into an eDirectory event.

Style sheets can be placed on the driver object. The InputTransform style sheet uses XSLT
processing to transform external application events into eDirectory events.The OutputTransform
style sheet using XSLT process to transform an eDirectory event into an external application event.

The DirXML engine performs all the processing of the rules and style sheets. It knows how to obtain
the information from the eDirectory objects and attributes. The driver developer needs to supply
values for these rules and the optional style sheets.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-Driver
Contains the configuration attributes and objects for a single DirXML driver.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.2

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container On

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top DirXML-Driver

Containment DirXML-DriverSet DirXML-Driver

Named By CN (Common Name) DirXML-Driver

DirXML-Driver Inherited from Top

CN Object Class
DirXML Definitions for the Schema 261

262 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

Remarks
This object can contain two application shim objects, DirXML-Subscriber (page 271) and DirXML-
Publisher (page 265). These objects are associated with the DirXML object by their containment. If
they are placed in another directory, the driver looses its association with them.

If the subscriber or publisher objects are created with ConsoleOne®, ConsoleOne places them under
the driver the administrator is configuring.

DirXML-Driver

DirXML-ApplicationSchema (page 275)
DirXML-DriverCacheLimit (page 278)
DirXML-DriverStartOption (page 281)
DirXML-DriverStorage (page 282)
DirXML-InputTransform (page 285)
DirXML-JavaModule (page 287)
DirXML-MappingRule (page 289)
DirXML-NativeModule (page 291)
DirXML-OutputTransform (page 292)

DirXML-ShimAuthID (page 294)
DirXML-ShimAuthPassword (page 295)
DirXML-ShimAuthServer (page 296)
DirXML-ShimConfigInfo (page 297)
DirXML-State (page 299)
Private Key
Public Key
Security Equals

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-DriverSet
Contains all the drivers that are applicable for a given server.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.1

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container On

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top DirXML-DriverSet

Containment Country

domain

Locality

Organization

Organizational Unit

DirXML-DriverSet

DirXML-DriverSet

DirXML-DriverSet

DirXML-DriverSet

DirXML-DriverSet

Named By CN (Common Name) DirXML-DriverSet

DirXML-DriverSet Inherited from Top

CN Object Class
DirXML Definitions for the Schema 263

264 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

Remarks
This object should be defined as its own partition, so that a replica can be placed on the eDirectory
servers that are using the driver set. With this configuration, servers not using the driver set are not
involved with synchronizing the data in the DirXML partition.

DirXML-DriverSet

DirXML-DriverTraceLevel (page 283)
DirXML-JavaDebugPort (page 286)
DirXML-JavaTraceFile (page 288)

DirXML-ServerList (page 298)
DirXML-XSLTraceLevel (page 301)

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-Publisher
Contains the required information that allows an external application to synchronized selected data
with eDirectory.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.3

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container On

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top DirXML-Publisher

Containment DirXML-Driver DirXML-Publisher

Named By CN (Common Name) DirXML-Publisher

DirXML-Publisher Inherited from Top

CN Object Class
DirXML Definitions for the Schema 265

266 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

Remarks
This object can contain rule and style sheet objects which further define the format and rules that
DirXML engine enforces when it sends data from the external application to eDirectory.

DirXML-Publisher

DirXML-CreateRule (page 277)
DirXML-DriverFilter (page 279)
DirXML-EventTransformationRule (page 284)
DirXML-MatchingRule (page 290)

DirXML-PlacementRule (page 293)
Private Key
Public Key

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-Rule
Contains rule information which controls the behavior of the DirXML-Driver, DirXML-Publisher,
or DirXML-Subscriber.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.7

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container Off

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top DirXML-Rule

Containment DirXML-Driver (page 261)

DirXML-Publisher (page 265)

DirXML-Subscriber (page 271)

DirXML-Rule

DirXML-Rule

DirXML-Rule

Named By CN (Common Name) DirXML-Rule

DirXML-Rule Inherited from Top

CN Object Class
DirXML Definitions for the Schema 267

268 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

Remarks
A rule object contains a particular type of rule in an XDS format defined for that rule type. Rule
objects can contain mapping, matching, create, and placement rules. XDS is a subset of XML and is
defined in the nds.dtd which specifies the formats for the rules.

DirXML-Rule

XmlData (page 302)

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-StyleSheet
Contains the XSL data that can transform data from one format to another, for example from XDS
format to the external application format.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.6

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container Off

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes StyleSheet (page 273) DirXML-StyleSheet

Containment DirXML-Driver

DirXML-Publisher

DirXML-Subscriber

DirXML-StyleSheet

DirXML-StyleSheet

DirXML-StyleSheet

Named By CN (Common Name) StyleSheet (page 273)

DirXML-StyleSheet Inherited from StyleSheet Inherited from Top

(None) CN Object Class
DirXML Definitions for the Schema 269

270 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

Remarks
Attributes associate a particular style sheet with a driver object. The DirXML-Driver contains two
attributes (DirXML-InputTransform and DirXML-OutputTransform) which can associate both a
input and output style sheet with the driver. The DirXML-Publisher and DirXML-Subscriber objects
use the DirXML-EventTransformationRule attribute to form an association with a style sheet.

DirXML-StyleSheet Inherited from StyleSheet

(None) XmlData (page 302)

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-Subscriber
Contains the required information that allows eDirectory to synchronize selected data to an external
application.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.4

Class Flags

Class Structure

Mandatory Attributes

Optional Attributes

Class Flags Setting

Container On

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top DirXML-Subscriber

Containment DirXML-Driver DirXML-Subscriber

Named By CN (Common Name) DirXML-Subscriber

DirXML-Subscriber Inherited from Top

CN Object Class

DirXML-Subscriber

DirXML-CreateRule (page 277)
DirXML-DriverFilter (page 279)
DirXML-EventTransformationRule (page 284)

DirXML-MatchingRule (page 290)
DirXML-PlacementRule (page 293)
DirXML-Timestamp (page 300)
DirXML Definitions for the Schema 271

272 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Default ACL Template

Remarks
This object can contain rule and style sheet objects which further define the format and rules that the
DirXML engine enforces when it sends data from eDirectory to the external applicatioin.

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
StyleSheet
Contains general XML styling information.

ASN.1 ID
2.16.840.1.113719.1.14.6.1.5

Class Flags

Class Structure

Mandatory Attributes

Class Flags Setting

Container Off

Effective On

Nonremovable On

Ambiguous Naming Off

Ambiguous Container Off

Auxiliary Class Off

Rule Class/Attribute Defined For

Super Classes Top StyleSheet

Containment Country

domain

Locality

Organization

Organizational Unit

StyleSheet

StyleSheet

StyleSheet

StyleSheet

StyleSheet

Named By CN (Common Name) StyleSheet

StyleSheet Inherited from Top

CN Object Class
DirXML Definitions for the Schema 273

274 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Optional Attributes

Default ACL Template

B.2 DirXML Attribute Definitions
The following attributes have been defined for DirXML drivers and their associated objects.

StyleSheet

XmlData (page 302)

Inherited from Top

ACL
Audit:File Link
Authority Revocation
Back Link (Attribute)
Bindery Property
CA Private Key
CA Public Key
Certificate Revocation
Certificate Validity Interval
Cross Certificate Pair
DirXML-Association

Equivalent To Me
GUID
Last Referenced Time
MASV:Authorized Range
MASV:Default Range
MASV:Proposed Label
Obituary
Other GUID
Reference
Revision
Used By

Object Name Default Rights Affected Attributes Class Defined For

[Creator] Supervisor [Entry Rights] Top
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-ApplicationSchema
Holds the XML file that describes the external application's schema.

Syntax
Stream

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.29

Used In
DirXML-Driver (page 261)

Remarks
The schema-def element in the nds.dtd defines the format of this document. See <schema-def>
(page 162).
DirXML Definitions for the Schema 275

276 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-Associations
Holds the information that links an eDirectory object with an object in an external application.

Syntax
Path

Constraints
DS_NONREMOVABLE_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.4

Used In
Top

Remarks
This is a multi-valued attribute, so objects can have associations with multiple DirXML drivers.
However, an object cannot have multiple associations with a single driver.

The Path syntax contains three fields. DirXML uses the volume field to hold distinguished name of
the DirXML driver. The name space (integer) field holds the state of the association. The path field
(string) contains a identifier used by the external application that uniquely identifies an object in that
application.

Since all object in the eDirectory database inherit from Top, all objects have the potential for an
association with an object in an external application.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-CreateRule
Contains the distinguished name of the rule object which contains the create rules.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.22

Used In
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)

Remarks
Create rules specify the conditions under which a new object can be created in eDirectory or the
external application.

The referenced rule object can be a DirXML-Rule object with XML data or a DirXML-StyleSheet
object with XSLT data.
DirXML Definitions for the Schema 277

278 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-DriverCacheLimit
Contains the maximum size, in kilobytes, of the driver's cache file.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_PUBLIC_READ
DS_READ_ONLY_ATTR
DS_SCHEDULE_SYNC_NEVER
DS_SINGLE_VALUED_ATTR

ASN.1 ID
2.16.840.1.113719.1.14.4.1.24

Used In
DirXML-Driver (page 261)

Remarks
A value of zero allows an unlimited size.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-DriverFilter
Contains the filter specifying what data will pass to and from eDirectory and the external
application.

Syntax
Stream

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.11

Used In
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)
DirXML Definitions for the Schema 279

280 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-DriverSetDN
References the container that holds the driver's definitions that are to be run on any given server.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.12
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-DriverStartOption
Indicates how the driver should be initialized.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_PUBLIC_READ
DS_READ_ONLY_ATTR
DS_SCHEDULE_SYNC_NEVER
DS_SINGLE_VALUED_ATTR

ASN.1 ID
2.16.840.1.113719.1.14.4.1.13

Used In
DirXML-Driver (page 261)

Remarks
Currently, three values are defined for the drivers.

Value Description

1 Auto. Start automatically when eDirectory is initialized.

2 Manual. Start manually through the ConsoleOne interface.

3 Disabled. Cannot start until set to Manual or Auto.
DirXML Definitions for the Schema 281

282 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-DriverStorage
Holds any required information in XML format that a driver may need between invocations.

Syntax
Stream

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.30

Used In
DirXML-Driver (page 261)

Remarks
The driver is responsible for storing and retrieving this information in an XML format that it
understands.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-DriverTraceLevel
Contains the maximum level of DirXML trace message to output for drivers in the Driver Set.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.25

Used In
DirXML-DriverSet (page 263)

Remarks
This attribute supports the following values:

Value Description

0 No tracing

1 Displays informational messages about DirXML

2 Displays messages and dumps the XML that the driver is sending and returning
DirXML Definitions for the Schema 283

284 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-EventTransformationRule
Contains the distinguished name of the DirXML-StyleSheet object which contains the event
transformation rules.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.23

Used In
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)

Remarks
Event transformation rules convert events from one type to another. For example, they can be used
to convert a <delete> element to a <remove-association> element.

This is an optional method for converting between systems. A DirXML driver is not required to
supply such a rule.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-InputTransform
Contains the distinguished name of the DirXML-StyleSheet object which contains transformation
rules for data sent by the DirXML driver to the DirXML engine.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.17

Used In
DirXML-Driver (page 261)

Remarks
DirXML-StyleSheet object contains XSL commands for XSLT processing. These commands can be
used for data format mapping such as changing a 15.2.1965 date format to a 2/15/65 format.

This is an optional method for converting between systems. A DirXML driver is not required to
supply such a style sheet.
DirXML Definitions for the Schema 285

286 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-JavaDebugPort
Contains whether the driver is using a debugging port on the Java Virtual Machine.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.27

Used In
DirXML-DriverSet (page 263)

Remarks
This attribute supports the following values:

Value Description

0 Don't use a debugging port

-1 Auto select a debugging port
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-JavaModule
Holds the name of the Java class that must be loaded with the DirXML driver.

Syntax
Case Ignore String

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.3

Used In
DirXML-Driver (page 261)

Remarks
The Java class must implement the com.novell.nds.dirxml.driver.SubscriptionShim interface.
DirXML Definitions for the Schema 287

288 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-JavaTraceFile
Specifies where all Java System.out and System.err output can be logged.

Syntax
Case Ignore String

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.28

Used In
DirXML-DriverSet (page 263)

Remarks
This attribute contains the name and path of a file that logs the output.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-MappingRule
Contains the distinguished name of the object which contains the mapping rules.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.19

Used In
DirXML-Driver (page 261)

Remarks
Mapping rules map eDirectory class and attribute names to their corresponding names in the
external application.

The referenced rule object can be a DirXML-Rule object with XML data or a DirXML-StyleSheet
object with XSLT data.
DirXML Definitions for the Schema 289

290 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-MatchingRule
Contains the distinguished name of a rule object which contains the matching rules.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.21

Used In
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)

Remarks
Matching rules specify how eDirectory and the external application discover that an eDirectory
object corresponds to an external application entry. The rules specify which attribute values must
match to create an association.

The referenced rule object can be a DirXML-Rule object with XML data or a DirXML-StyleSheet
object with XSLT data.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-NativeModule
Holds the name of the DLL, NLM, or shared library that should be loaded with the driver.

Syntax
Case Ignore String

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.9

Used In
DirXML-Driver (page 261)

Remarks
The subscriber channel of the driver must supply a number of well defined entry points for the
DirXML engine.
DirXML Definitions for the Schema 291

292 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-OutputTransform
Contains the distinguished name of the DirXML-StyleSheet object which contains transformation
rules for data send from the DirXML engine to the DirXML driver.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.18

Used In
DirXML-Driver (page 261)

Remarks
DirXML-StyleSheet object contains XSL commands for XSLT processing. These commands can be
used for data format mapping such as changing a 15.2.1965 date format to a 2/15/65 format.

This is an optional method for converting between systems. A DirXML driver is not required to
supply such a style sheet.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-PlacementRule
Contains the distinguished name of an object which contains the placement rules.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.20

Used In
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)

Remarks
Placement rules define where newly created objects are located. For the publisher, the rules define in
which eDirectory containers objects can be created. For the subscriber, the rules define where newly
created objects are located in the external application.

The referenced rule object can be a DirXML-Rule object with XML data or a DirXML-StyleSheet
object with XSLT data.
DirXML Definitions for the Schema 293

294 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-ShimAuthID
Holds the identity that the DirXML driver passes to the external application for authentication.

Syntax
Case Ignore String

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.5

Used In
DirXML-Driver (page 261)

Remarks
The identity can be a name or a unique identifying number, in the format required by the external
application to identify an administrator of the application.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-ShimAuthPassword
Holds the password that the DirXML driver passes to the external application for authentication.

Syntax
Octet String

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.6

Used In
DirXML-Driver (page 261)
DirXML Definitions for the Schema 295

296 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-ShimAuthServer
Holds information about the server hosting the external application which the DirXML driver
requires for authentication.

Syntax
Case Ignore String

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.7

Used In
DirXML-Driver (page 261)

Remarks
This is an optional attribute. If all you need to authenticate to the external application is a name and
a password, then this attribute does not need a value. If the external application requires a server
name or server address, this information should be store in this attribute.
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-ShimConfigInfo
Holds configuration information for the DirXML driver.

Syntax
Stream

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.8

Used In
DirXML-Driver (page 261)

Remarks
All configuration information is optional. This attribute allows drivers to have configuration options
for the driver, the publisher, and the subscriber. The information is read when the DirXML engine
initializes the driver.
DirXML Definitions for the Schema 297

298 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-ServerList
Contains the distinguished names of the servers that are using the driver set.

Syntax
Distinguished Name

Constraints
DS_NONREMOVABLE_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.15

Used In
DirXML-DriverSet (page 263)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-State
Contains the current status of the driver or the modification state of the publisher or subscriber filter.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_PER_REPLICA
DS_PUBLIC_READ
DS_READ_ONLY_ATTR
DS_SCHEDULE_SYNC_NEVER
DS_SINGLE_VALUED_ATTR

ASN.1 ID
2.16.840.1.113719.1.14.4.1.14

Used In
DirXML-Driver (page 261)
DirXML-Publisher (page 265)
DirXML-Subscriber (page 271)

Remarks
DirXML-Driver objects support the following states for the driver.

DirXML-Subscriber and DirXML-Publisher objects support the following states for the filter.

State Description

0 Stopped

1 Starting

2 Running

3 Shutdown pending

11 Driver get schema

State Description

0 Current

1 Modified
DirXML Definitions for the Schema 299

300 NDK: Novel

novdocx (E
N

U
) 01 February 2006
DirXML-Timestamp
Contains a timestamp that allows a driver to know when the external application was last
synchronized with eDirectory.

Syntax
Timestamp

Constraints
DS_NONREMOVABLE_ATTR
DS_PUBLIC_READ
DS_PER_REPLICA
DS_READ_ONLY_ATTR
DS_SCHEDULE_SYNC_NEVER
DS_SINGLE_VALUED_ATTR

ASN.1 ID
2.16.840.1.113719.1.14.4.1.16

Used In
DirXML-Subscriber (page 271)
l Identity Manager (DirXML) Driver Kit

novdocx (E
N

U
) 01 February 2006
DirXML-XSLTraceLevel
Contains the maximum level of XSL trace messages to output for the XSL processor.

Syntax
Integer

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.26

Used In
DirXML-DriverSet (page 263)

Remarks
This attribute supports the following values:

Value Description

0 No tracing

1 Displays source node processing

2 Displays the above messages and rule instantiation messages

3 Displays the above messages and temple instantiation messages

4 Displays the above messages and rule matching and select expression messages
DirXML Definitions for the Schema 301

302 NDK: Novel

novdocx (E
N

U
) 01 February 2006
XmlData
Holds XML encoded data.

Syntax
Stream

Constraints
DS_NONREMOVABLE_ATTR
DS_SINGLE_VALUED_ATTR
DS_SYNC_IMMEDIATE

ASN.1 ID
2.16.840.1.113719.1.14.4.1.3

Used In
DirXML-Rule (page 267)
StyleSheet (page 273)

Remarks
l Identity Manager (DirXML) Driver Kit

C
novdocx (E

N
U

) 01 February 2006
CRevision History

The following table lists changes made to the Identity Manager Driver Kit documentation:

March 1, 2006 Made minor technical edits.

October 5, 2005 Transitioned to revised Novell documentation standards.

Updated the description of Remote Communication in Section 1.5, “Designing the
Driver,” on page 30.

April 2005 Added information on the Identity Manager driver for exteNd composer.

February 2004 Updated NDS.DTD to the version 2 release, corresponding to the release of
Nsure™ Identity Manager 2.

Added DirXML script DTD and reference.

Updated XDS libraries with support for new elements in NDS.DTD.

June 2003 Added additional information on the XDS Libraries and updated introductory
material.

March 2003 Added documentation on the XDS Libraries.

March 2002 Updated the documentation to DirXML 1.1.

Added the following:

• Command transformation rule

• Rule chaining

• Expanded use of the query parameters to the schema mapping rules, input
transformation rules, and output transformation rules

• Command style sheet parameters

• Automatic handling of auxiliary classes

• Enhanced move operations

• Attribute password modify

• Dynamic loading of jar files

June 2001 Added information on using the DirXML Driver Kit for the Solaris and Linux
platforms.

February 2001 Revised the rule chapters and added a style sheet chapter. Added DirXML error
codes.

September 2000 Moved to the NDK as an Early Access component.

May 2000 Published as a Leading Edge component
Revision History 303

304 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Identity Manager (DirXML) Driver Kit

DirXML Elements

novdocx (E
N

U
) 31 January 2006
A
add 127
add-association 130
add-attr 168
add-value 169
allow-attr 170
allow-class 171
association 172
attr 173
attr-def 174
attr-name-map 205
authentication-info 176

C
class-def 177
component 178
config-object 179
create-rule 218
create-rules 216

D
delete 132
driver-config 121
driver-filter 180
driver-options 182
driver-state 184

I
init-params 134
input 123
instance 139

M
match-attr 212, 220, 229
match-class 213, 230
matching-rule 210
matching-rules 208
match-path 214, 231
modify 141
modify-association 144
modify-attr 146, 185, 186
move 148

N
nds 119

O
output 125

P
parent 187
placement 232
placement-rule 227
placement-rules 224
publisher-options 189
publisher-state 191

Q
query 151
query-schema 155

R
read-attr 192
remove-association 157
remove-value 193
rename 159
required-attr 221

S
schema-def 162
search-attr 194
search-class 195
source 196
status 166
subscriber-options 197
subscriber-state 199

T
template 222

V
value 200
305

306

novdocx (E
N

U
) 31 January 2006

	NDK: Novell Identity Manager (DirXML) Driver Kit
	About This Guide
	1 DirXML and DirXML Drivers
	1.1 Driver Basics
	1.2 Requirements and Resources
	1.2.1 Requirements
	1.2.2 Resources

	1.3 DirXML Architecture
	1.3.1 DirXML Features
	1.3.2 DirXML Engine and Driver Interaction
	1.3.3 Driver Interaction with eDirectory Objects and Attributes

	1.4 DirXML and Multiple Directories
	1.5 Designing the Driver
	1.6 Where to Get Started

	2 Writing a DirXML Driver
	2.1 Driver Overview
	2.1.1 Driver Communication and Threads
	2.1.2 Driver Life Cycle

	2.2 Getting Started
	2.2.1 Application Requirements
	2.2.2 XML Interface
	2.2.3 Language-C++ or Java
	2.2.4 Overview of the Process

	2.3 Starting with the Skeleton Driver
	2.3.1 Setting Up a Skeleton Driver Instance to Run
	2.3.2 Compiling the Java Skeleton Driver
	2.3.3 Compiling the C++ Skeleton Driver

	2.4 Constructing the Driver Object
	2.4.1 Java Constructor
	2.4.2 CreateDriver Function for C++

	2.5 Implementing the DriverShim Interface
	DriverShim init
	DriverShim getSubscriptionShim
	Driver getPublicationShim
	DriverShim shutdown
	DriverShim getSchema
	DriverShim destroy (C++ only)

	2.6 Implementing the SubscriptionShim Interface
	SubscriptionShim init
	SubscriptionShim execute

	2.7 Implementing the PublicationShim Interface
	PublicationShim init
	PublicationShim start

	2.8 Implementing the XmlQueryProcessor Interface
	query

	2.9 Dealing with XML Documents
	2.9.1 Java Sample Code
	2.9.2 C++ Sample Code

	2.10 Driver State
	2.11 Driver Configuration
	2.12 Additional Tips for C++ Drivers
	2.12.1 Memory Management
	2.12.2 C++ Utility Functions and Interfaces

	3 Debugging the Driver
	3.1 Using DSTrace and the DirXML Trace Log
	3.1.1 Enabling Verbose DirXML Driver Messages
	3.1.2 Enabling the DirXMLTrace Log
	3.1.3 Adding Trace Messages to Your Driver

	3.2 Using a Debugger with a C++ Driver
	3.2.1 DLLs on Windows (NT, 2000, XP)
	3.2.2 NLMs on NetWare

	3.3 Using a Debugger with a Java Driver
	3.3.1 Agent Debugger
	3.3.2 Java Platform Debugger Architecture (JPDA)
	3.3.3 Visual Cafe 3.0 Debugger
	3.3.4 JDB Debugger
	3.3.5 JVM Variables

	4 Introduction to the Rules and Filters
	4.1 Event Filters
	4.2 Transformation Rules
	4.3 Channel-Independent Transformations
	4.3.1 Schema Mapping Rules
	4.3.2 Input Transformation Style Sheet
	4.3.3 Output Transformation Style Sheet

	4.4 Channel-Dependent Transformations
	4.4.1 Matching Rules
	4.4.2 Create Rules
	4.4.3 Placement Rules
	4.4.4 Event Transformation Rules
	4.4.5 Command Transformation Rules

	4.5 Event Processing
	4.5.1 Subscriber Channel
	4.5.2 Publisher Channel

	5 Novell exteNd Composer Driver
	5.1 Setting Up the exteNd Composer Driver
	5.1.1 Preparing the Project
	5.1.2 Building the Project
	5.1.3 Running the Project

	6 Driver Installation
	6.1 Copy the Driver
	6.2 Create the Driver Objects
	6.3 Exporting the Configuration
	6.4 Set Up the Server Environment

	7 eDirectory DTD Commands and Events
	7.1 Top Level Elements
	<nds>
	<driver-config>

	7.2 Input and Output Elements
	<input>
	<output>

	7.3 Command and Event Elements
	<add>
	<add-association>
	<delete>
	<init-params>
	<instance>
	<modify>
	<modify-association>
	<modify-password>
	<move>
	<query>
	<query-schema>
	<remove-association>
	<rename>
	<schema-def>
	<status>

	7.4 Other Elements
	<add-attr>
	<add-value>
	<allow-attr>
	<allow-class>
	<association>
	<attr>
	<attr-def>
	<authentication-info>
	<class-def>
	<component>
	<config-object>
	<driver-filter>
	<driver-options>
	<driver-state>
	<modify-attr>
	<old-password>
	<parent>
	<publisher-options>
	<publisher-state>
	<read-attr>
	<remove-value>
	<search-attr>
	<search-class>
	<source>
	<subscriber-options>
	<subscriber-state>
	<value>

	8 Rule Reference
	8.1 Schema Mapping Elements
	<attr-name-map>

	8.2 Matching Rule Elements
	<matching-rules>
	<matching-rule>
	<match-attr>
	<match-class>
	<match-path>

	8.3 Create Rule Elements
	<create-rules>
	<create-rule>
	<match-attr>
	<required-attr>
	<template>

	8.4 Placement Rule Elements
	<placement-rules>
	<placement-rule>
	<match-attr>
	<match-class>
	<match-path>
	<placement>

	8.5 Event Transformation Rules
	8.5.1 Sample Event Transformation Rule

	8.6 Command Transformation Rules
	8.6.1 Sample Command Transformation Rules

	8.7 Input Transformation Style Sheets
	8.8 Output Transformation Style Sheets

	9 Style Sheets
	9.1 Restrictions
	9.1.1 Matching Rule Restrictions
	9.1.2 Create Rule Restrictions
	9.1.3 Placement Rule Restrictions

	9.2 Starting with an Identity Transformation
	9.3 Using the Parameters that DirXML Passes
	9.4 Using Extension Functions
	9.5 Testing Style Sheets Outside of DirXML
	9.6 Invoking the Novell XSLT Processor Directly
	9.7 Creating a Password Example: Create Rule
	9.8 Creating an eDirectory User Example: Create Rule

	10 DirXML Error Codes
	11 Javadoc, FAQs, and DTD Reference
	A VRTest Application
	A.1 Requirements and Installation

	B DirXML Definitions for the Schema
	B.1 DirXML Object Class Definitions
	DirXML-Driver
	DirXML-DriverSet
	DirXML-Publisher
	DirXML-Rule
	DirXML-StyleSheet
	DirXML-Subscriber
	StyleSheet

	B.2 DirXML Attribute Definitions
	DirXML-ApplicationSchema
	DirXML-Associations
	DirXML-CreateRule
	DirXML-DriverCacheLimit
	DirXML-DriverFilter
	DirXML-DriverSetDN
	DirXML-DriverStartOption
	DirXML-DriverStorage
	DirXML-DriverTraceLevel
	DirXML-EventTransformationRule
	DirXML-InputTransform
	DirXML-JavaDebugPort
	DirXML-JavaModule
	DirXML-JavaTraceFile
	DirXML-MappingRule
	DirXML-MatchingRule
	DirXML-NativeModule
	DirXML-OutputTransform
	DirXML-PlacementRule
	DirXML-ShimAuthID
	DirXML-ShimAuthPassword
	DirXML-ShimAuthServer
	DirXML-ShimConfigInfo
	DirXML-ServerList
	DirXML-State
	DirXML-Timestamp
	DirXML-XSLTraceLevel
	XmlData

	C Revision History

