
www.novell.com/documentation
Novell Modular Authentication
Services
Developer Kit

March 19, 2012

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right
to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of
such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade
laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or
classification to export, re-export, or import deliverables. You agree not to export or re-export to entities on the current U.S.
export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use
deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please refer to International Trade
Services (http://www.novell.com/info/exports/) for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2012 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a
retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S.
and in other countries.

Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products, and to get updates,
see developer.novell.com/ndk. To access online documentation for Novell products, see www.novell.com/documentation.

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/info/exports/
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents
About This Guide 7

1 Getting Started 9

1.1 Development Overview . 9
1.1.1 Additional Information . 10

1.2 Selecting a Compiler . 11

2 NMAS Concepts 13

2.1 NMAS Login Considerations . 13
2.2 Login Method Overview . 14

2.2.1 NMAS Login Method Security Considerations. 16
2.3 NMAS Client. 16

2.3.1 Login Dialog Box . 17
2.3.2 NMAS Client Manager . 17
2.3.3 NMAS on Linux . 18

2.4 NMAS Server . 18
2.4.1 NMAS Server Manager . 19
2.4.2 Authentication Store . 19

3 Tasks for Writing a Login Method 23

3.1 Building an NMAS Login Method . 23
3.2 Generating a Method Signing Certificate Request . 24

3.2.1 Steps for Generating a Signing Key . 25
3.2.2 Steps for Signing an LSM . 26
3.2.3 Packaging an NMAS Method. 27
3.2.4 Novell Yes CertifiedTM Program . 31

3.3 Testing-Debugging Unsigned Login Methods . 31
3.3.1 Requirements for Building an LSM . 31
3.3.2 Building a Windows LSM . 32
3.3.3 Building a NetWare LSM . 32
3.3.4 Building a Linux LSM . 33
3.3.5 NMAS NDK Sample Code . 33

3.4 Installing the Clear Text Password Method . 34
3.5 Building an NMAS LCM . 34

3.5.1 Requirements for Building an LCM . 35
3.5.2 Building a Windows LCM. 35
3.5.3 Building a Linux LCM. 35
3.5.4 Building a Java LCM . 36

3.6 Enrolling a User with the Clear Text Password . 36
3.6.1 Using ConsoleOne on Windows . 37
3.6.2 Using Method Management APIs on Linux . 37

3.7 Testing Your NMAS Methods. 40
3.7.1 Testing on Windows with the Novell Client . 40
3.7.2 Testing the Linux LCM. 42
3.7.3 Testing the Java LCM . 43
Contents 3

4 Con
4 Multiple Authentication Framework Functions 45

4.1 MAF Programming Model . 46
4.2 NMAS Attribute IDs . 47

4.2.1 NMAS AID Options . 51
4.3 MAF C Functions . 51

4.3.1 MAF Attribute Functions . 51
4.3.2 MAF Login State Functions . 51
4.3.3 MAF Memory Functions. 51
4.3.4 MAF Password Functions . 52
4.3.5 MAF Trace Message Functions. 52
4.3.6 MAF Transport Functions . 52
4.3.7 MAF Event Log Function . 52
4.3.8 MAF Data Store Functions*** . 52

4.4 MAF Java Functions . 54
4.4.1 Library Architecture . 54
4.4.2 NMAS Java LCM on Linux. 54

4.5 MAF C Function Listing . 54
MAF_AllowPasswordSet . 55
MAF_Begin . 56
MAF_End . 57
MAF_Free (obsolete 3/1/2006) . 58
MAF_GetAttribute . 59
MAF_GetPassword . 61
MAF_GetPasswordEx . 63
MAF_LogEvent . 65
MAF_Malloc (obsolete 3/1/2006) . 67
MAF_MemFree . 68
MAF_MemMalloc . 69
MAF_MemRealloc . 70
MAF_PolicyCheck . 71
MAF_PutAttribute. 72
MAF_Read . 73
MAF_SetPassword . 75
MAF_Trace . 76
MAF_TraceEnabled . 77
MAF_TraceOnError . 78
MAF_Write . 79
MAF_WriteRead. 80
MAF_XRead. 82
MAF_XWrite . 84
MAF_XWriteRead . 85
MAFDS_ATTRIBUTE. 87
MAFDS_CreateContext . 88
MAFDS_FreeContainerEntries . 89
MAFDS_FreeContext . 90
MAFDS_FreeModValues . 91
MAFDS_FreeValues . 92
MAFDS_FreeValueData . 93
MAFDS_GetParentContainer. 94
MAFDS_GetPartitionRootContainer . 95
MAFDS_GetValueData . 96
MAFDS_InsertModValue . 97
MAFDS_ListContainerEntries . 99
MAFDS_ModifyEntry . 100
MAFDS_ReadAttributeValues . 102
MAFDS_ReadInheritedAttributeValues . 104
MAFDS_VALUE_DATA . 106
tents

5 Method Management Functions 107

5.1 Configuration Store Functions . 107
5.2 SecretStore Management Functions . 107
5.3 Login Method Management Functions. 108

NMAS_DeleteLoginConfig . 109
NMAS_DeleteLoginSecret . 110
NMAS_GetLoginConfig . 111
NMAS_Login . 113
NMAS_PutLoginConfig . 115
NMAS_PutLoginSecret . 117
nmasldap_delete_login_config. 119
nmasldap_delete_login_secret . 121
nmasldap_get_login_config . 123
nmasldap_put_login_config . 125
nmasldap_put_login_secret . 127

6 NMAS Login Policy Management 129

6.1 NMAS Login Policy Management . 129
nmasldap_policy_refresh . 130
nmasldap_check_login_policy . 131
nmasldap_set_address_policy. 133

7 Password Management Functions 135

7.1 NMAS Password Management Java Classes . 135
7.2 Password Management Requirements . 136

7.2.1 Other Development Requirements . 136
7.3 Simple Password Management . 136
7.4 Universal Password Management . 137
7.5 NMAS LDAP C Password Management Functions . 138

nmasldap_put_simple_pwd . 139
nmasldap_delete_simple_pwd. 140
nmasldap_get_simple_pwd . 141
nmasldap_change_password . 142
nmasldap_set_password . 143
nmasldap_delete_password . 144
nmasldap_get_password . 145
nmasldap_get_password_policy_dn . 146
nmasldap_policy_check_current_password . 147
nmasldap_policy_check_password . 148
nmasldap_get_password_status . 149
nmasldap_get_password_status_ex . 151
nmasldap_get_user_random_password . 153
nmasldap_get_random_password . 154

8 Identification Method Function 155

8.1 Identification Method Function Descriptions . 155
8.1.1 Implementing an ID Plug-in . 155
8.1.2 Valid Login Method Flags . 157

8.2 Login Control Registry Settings . 157
8.3 NMAS Log-in Method Function Descriptions . 158

NMAS_LOGIN_IDENTITY . 159
LPFN_DeviceRemoved . 160
*LPFN_NMAS_RegisterIdentityPlugin . 161
*LPFN_NMAS_SetLoginIdentity . 162
Contents 5

6 Con
*LPFN_NMAS_StartIdentityPlugin . 163
*LPFN_NMAS_StopIdentityPlugin . 164
RegisterDeviceMonitorPlugin. 165
StartDeviceMonitorPlugin. 166
StopDeviceMonitorPlugin. 167
NMAS_GetUserName (obsolete 3/03) . 168

9 NMAS Javadoc References 171

9.1 NMAS Interface Classes . 171
9.2 NMAS Summary Classes. 171
9.3 NMAS Exception Classes . 171
9.4 NMAS Constants . 172

A NMAS Error Codes 173

B Installing Novell eDirectory 185

C Deprecated NMAS Functions 187

C.1 Client Application Login Functions . 187
NMAS_DisconnectedLogin . 188
NMAS_LegacyRelogin . 189

C.2 NMAS Transport API . 190
NMAS_ClientLogin. 191
NMAS_MessageHandler . 194
NMAS_FreeReply . 196

C.3 Proxy Functions . 196
NMAS_Authenticate. 198
NMAS_AuthenticateConnection. 199
NMAS_CanDo . 200
NMAS_CreateContext . 202
NMAS_DestroyContext . 203
NMAS_FindMethods . 204
NMAS_FindLoginSequences . 205
NMAS_GetAttribute . 206
NMAS_GetAvailableMethods. 207
NMAS_InvokeMethod . 208
NMAS_LocalAuthenticate . 209
NMAS_Logout . 210
NMAS_PutAttribute . 211
NMAS_WhatNext . 212

C.4 Secure Workstation Login Method . 213
C.4.1 Device Monitor Plug-in. 213
C.4.2 Secure Workstation Policies . 213

D Revision History 215

Glossary 221
tents

About This Guide

Novell® Modular Authentication Services (NMAS™) is a component of Novell eDirectory™ that
enables you to centrally manage multiple authentication methods across your network. The NMAS
SDK provides a set of tools to create an expanded set of NMAS login methods to help you secure
critical network resources.

This guide contains the following sections:

 “Getting Started” on page 9

 “NMAS Concepts” on page 13

 “Tasks for Writing a Login Method” on page 23

 “Multiple Authentication Framework Functions” on page 45

 “Method Management Functions” on page 107

 “Password Management Functions” on page 135

 “Identification Method Function” on page 155

 “NMAS Javadoc References” on page 171

 Appendix A, “NMAS Error Codes,” on page 173

 Appendix B, “Installing Novell eDirectory,” on page 185

 Appendix C, “Deprecated NMAS Functions,” on page 187

 “Glossary” on page 221

 “Revision History” on page 215

Audience

This guide is intended for advanced application developers who are familiar with NMAS, other
Novell technologies, and Java, C and C++ development environments.

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of the NMAS NDK Guide, visit the NMAS NDK Web site (http://
developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service).

Additional Documentation

For the most recent version of the NMAS Installation, Administration, Login Method, and Novell
RADIUS Administration guides, see Novell Modular Authentication Services (NMAS) (http://
www.novell.com/documentation/nmas21/index.html).
About This Guide 7

http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service
http://www.novell.com/documentation/nmas21/index.html

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
8 NDK: Novell Modular Authentication Services

1 1Getting Started

The Novell® Modular Authentication Services (NMAS™) SDK is a development framework that
enables your applications to authenticate to Novell eDirectory™ using various login methods. Some
of the login methods you might develop include face recognition, fingerprints, voice recognition,
signature, iris recognition, certificates, tokens, smart cards, and passwords.

This section explains how to get started with NMAS and contains the following topics:

 Section 1.1, “Development Overview,” on page 9

 Section 1.2, “Selecting a Compiler,” on page 11

1.1 Development Overview
The NMAS SDK provides the tools to design a flexible and expandable login system using modular
plug-in methods that leverage existing Novell security components that are integrated with
eDirectory. These integrated security services include cryptography (Novell International
Cryptographic Infrastructure (NICI)), secure credential storage (Novell SecretStore®), and
authentication (NMAS).

NMAS dynamically assigns login rights to users, groups, and applications according to an
established Novell graded authentication (GA) policy.

An NMAS operation, in conjunction with graded authentication, allows network administrators to
control access to information based on how users log into a system. NMAS stores secret
authentication information-passwords, biometric vectors, smart card access, etc.- in the NMAS
Authentication Store, a high security data store in eDirectory that only NMAS can read and decipher.

IMPORTANT: To manage and coordinate the development of your login methods to the NMAS
framework, you must register with Novell Developer Support. For more details about coordinating
the development of your NMAS login methods, please contact Kamal Narayan, NMAS Product
Manager (mailto:nkamal@novell.com).

The NMAS executables (that is, NetWare nmas.nlm (release) and nmasdbg.nlm (debug)) are included
in the Novell Developer Kit (NDK). However, the complete NMAS package, including the install, is
not included in the NDK.

The following diagram illustrates the directory structure of the NMAS SDK:
Getting Started 9

mailto:nkamal@novell.com
mailto:nkamal@novell.com

Figure 1-1 NMAS SDK Directory Structure

Before installing and using the NMAS NDK package, developers should install the NMAS product,
then drop in the NDK debug executables for debugging purposes. For current, complete NMAS
information, see the NMAS Product Page (http://www.novell.com/products/nmas).

1.1.1 Additional Information

For more information about NMAS and other Novell security products, see the following links:

 Developer Notes article announcing NMAS (http://support.novell.com/techcenter/articles/
dnd20000303.html)

 Novell Security, Identity, and Access Management products (http://www.novell.com/solutions/
securityandidentity/).
10 NDK: Novell Modular Authentication Services

http://www.novell.com/products/nmas
http://support.novell.com/techcenter/articles/dnd20000303.html
http://www.novell.com/solutions/securityandidentity/

1.2 Selecting a Compiler
NLM™ applications can be developed on the following compilers.

Compiler Description

Eclipse An open source Java*-based IDE designed as a universal development
toolset that integrates well with Novell Linux Desktop (NLD).

For more information, see Eclipse (http://www.eclipse.org/).

GNU C/C++ A compiler used on many UNIX* and Linux* systems, which also supports
NLM development. For more information, see GNU Compiler Collection
(http://gcc.gnu.org).

For information about a preconfigured environment for NetWare, see the
following Forge project: UNIX Environment and gcc for NetWare (http://
forge.novell.com/modules/xfmod/project/?aunixnw).

Metrowerks* CodeWarrior* A commercial compiler with a source level debugger.

Certain levels of the DeveloperNet® program include a copy of
CodeWarrior or allow you to purchase one at a reduced price. For details,
see the Novell DeveloperNet Program (http://developer.novell.com/
brochure).

For instructions on setting up CodeWarrior for NLM development, see
Targeting the NetWare Operating System PDK 5.0 (http://
developer.novell.com/wiki/index.php/Metrowerks_CodeWarrior) from
Metrowerks.

Watcom* A free compiler and the first compiler to support NLM development. It
supports developing C applications for NetWare, but does not support
C++ applications for NetWare.

WLink does not support symbol prefixing except through the use of the
ALIAS link directive. Because “@” is overloaded in linker syntax, the
solution is difficult and requires quoting. Do not attempt to include
Watcom libraries.

For more information, see OpenWatcom (http://www.openwatcom.org).
Getting Started 11

http://www.eclipse.org/
http://gcc.gnu.org
http://forge.novell.com/modules/xfmod/project/?aunixnw
http://developer.novell.com/brochure
http://developer.novell.com/wiki/index.php/Metrowerks_CodeWarrior
http://www.openwatcom.org

12 NDK: Novell Modular Authentication Services

2 2NMAS Concepts

Novell® Modular Authentication Services (NMAS™) provides a means of integrating multiple login
services with all systems that rely upon Novell eDirectory™, the Novell directory services, as shown
in the following overview:

Figure 2-1 NMAS Login Components

The NMAS server enables a user to supply identity using a variety of login methods, which are then
used to provide an authenticated connection to eDirectory. The NMAS NDK enables you to create
your own NMAS login methods. See Figure 2-2 on page 15 for a more detailed view of the
architecture involved in this process.

The concepts required for you to create your own NMAS login methods in this SDK are discussed in
the following sections:

 Section 2.1, “NMAS Login Considerations,” on page 13

 Section 2.2, “Login Method Overview,” on page 14

 Section 2.3, “NMAS Client,” on page 16

 Section 2.4, “NMAS Server,” on page 18

2.1 NMAS Login Considerations
NMAS works with the graded authentication (GA) capability first shipped with NetWare® 5, and
provides a common point of administration for all login methods and policies through eDirectory.
An NMAS operation, in conjunction with graded authentication, allows the administrator to control
access to information based on how a user has logged into a system.

GA provides the ability to associate varying “clearances” to connections on the basis of network
policy, such as the login protocols and methods used, the properties of the workstation, the requested
capabilities, and other defined policies.

Authentication clearances can be based on any of the following factors:

 Something you know (a password or personal identification number [PIN])
NMAS Concepts 13

 Something you hold (a token, smart card, or certificate)

 Something you are (a biometric characteristic; for example, voice, fingerprint, retinal scan, or
facial recognition.)

Login strength can be improved by combining one or more of these factors. A problem for the
network administrator has been how to combine these factors from various vendors into a single
composite login for the administrator’s network. NMAS was designed to solve this problem.

Through a combination of login and post-login methods, an administrator can define a login
sequence that a user must follow in order to log in to the network. Multiple factors can be combined
from various vendors. The administrator also can define multiple login sequences through an NDS®
login policy. This policy allows access to resources on the network to be controlled based on which
sequence is used through Novell Graded Authentication Services (GA).

NMAS supports a combination of login methods including those that allow for NDS password, clear
text password, biometric devices, X.509 certificates (digitally signed), message digest, smart cards,
and tokens.

It is expected that many login methods will be developed in a partnership with third-party
developers. An administrator implementing NMAS can select various login devices from third-party
developers and use them together to implement a login sequence for the network.

For more information about installation and administration of NMAS, see the NMAS product portal
(http://www.novell.com/documentation/nmas21/).

2.2 Login Method Overview
NMAS is designed as a flexible and expandable login framework that enables you to develop plug-in
modules, called login methods, for your own login system. These login methods are used to
authenticate a user to eDirectory. A complete login method includes the following components:

 Login Server Module (LSM): The server-side component of a login method. The LSM is
invoked by the NMAS Server Manager. The LSM works with the Login Client Module to
transmit login credentials using the multiple authentication framework functions in a client/
server model. For more information, see Section 3.1, “Building an NMAS Login Method,” on
page 23.

 Login Client Module (LCM): A client-side component of a login method. The LCM is
essentially a program running on the workstation that interacts with the LSM. The LCM and
LSM transmit login credentials using the multiple authentication framework functions. See
Section 3.5, “Building an NMAS LCM,” on page 34.

 Method Management Tool (MMT): Most login methods require a management tool to enable
system administrators to edit system level login method parameters, which might include user-
specific data such as passwords, biometric data, and certificates. These management tools can be
implemented as any or all of the following: Novell iManager plug-ins, Novell ConsoleOne
snapins, or standalone utilities. In order to provide a consistent user experience, Novell provides
iManager™ plug-ins and/or ConsoleOne™ snap-ins for each Novell login method. Many Novell
partners also follow this pattern. A ConsoleOne example is included in the sample method
directory. For iManager plug-in development, we refer you to the NDK: iManager 2.7 Developer
Kit.

 Login Method Storage Attributes: Novell defines a set of attributes for storing login method
data. Java APIs for storing and reading data on these attributes are provided in the
NmasToolkit.jar. These APIs require an SSL LDAP connection with rights to the object on which
the data is stored. These APIs encrypt the data upon storage and decrypt it upon retrieval.
14 NDK: Novell Modular Authentication Services

http://www.novell.com/documentation/nmas21/

All of these components reside on the NMAS Client or NMAS Server, as shown in the following
diagram:

Figure 2-2 The NMAS SDK Architecture

The login screen prompts the user for identity and optionally requested login sequence and
requested clearance. The transport component provides the communication channel between client
and server (for example, Winsock, LDAP, and NCP™). The NMAS Client provides the client side of
the MAF Protocol (which negotiates the login sequence to be used), invokes the LCMs as directed by
the NMAS Server, and provides an API set that can be used by the LCMs to communicate with the
LSMs.

IMPORTANT: A login method developer must provide an LCM and an LSM. Currently, the NMAS
Client runs on Windows* and Linux platforms. An implementation of the NMAS Client ties into the
Novell Client32™, although the NMAS Client does not require Novell Client32.

NMAS stores secret login information—such as passwords, biometric vectors, and other
credentials—in the authentication store, a high security data store that only it can read and decipher.
Additionally, some NMAS methods rely upon PKI_Store for storage of X.509 certificates.
NMAS Concepts 15

2.2.1 NMAS Login Method Security Considerations

Consider the following security information as you develop your NMAS Login Methods.

 Prevent Spoofing of Novell eDirectory®: It is highly recommended that the Login Server
Module (LSM) validates the user-supplied login data against the user login data stored in
eDirectory. This prevents unauthorized users from using a rogue Login Client Module to spoof
and log into eDirectory. The Login Client Module (LCM) should collect login data from the user
and provide the login information to the LSM for validation.

 Protect user secrets stored in eDirectory: Protect user login data stored in eDirectory from
being read or modified by unauthorized users, including system administrators. Use the NMAS
Login Configuration Store or the NMAS Login Secret Store to store encrypted login data.

The Login Secret Store is intended to store login data, which can be stored by the administrator
or the user but not read by the administrator or the user. The Login Configuration Store is
intended to store login data which can be stored and read by the administrator or the user.

 Report login operations accurately: MAF_End (page 57) should accurately report success or
failure of login operations in the status output parameter:

Report 0 if the LCM/LSM completes successfully or non-zero if the LCM/LSM login operations
fail.

 Don't free memory more than once: Login Server Modules that call MAF_Free (obsolete 3/1/
2006) (page 58) or MAF_MemFree (page 68) more than once to free the same memory might
cause eDirectory to crash.

 Protect global configuration and user secret data: Data stored in the Login Configuration Store
and the Login Secret Store with the method ID of 0 or AIDs of
NMAS_AID_USER_GLOBAL_CONFIG_DATA or
NMAS_AID_USER_GLOBAL_SECRET_DATA is accessible by all login methods when calling
MAF_GetAttribute (page 59) and MAF_PutAttribute (page 72). Data not intended to be shared
by multiple login methods should not be stored as Global Login Configuration data and Global
Login Secret data . Store that type of data using the method ID assigned to the method or using
the AIDs of NMAS_AID_USER_CONFIG_DATA or NMAS_AID_USER_SECRET_DATA.

 Do not exchange secret data in clear text: Passwords or other secret data should not be
transmitted between the LCM and LSM in the clear when calling MAF_GetPassword (page 61),
MAF_GetPasswordEx (page 63), and MAF_SetPassword (page 75). Call MAF_XRead (page 82),
MAF_XWrite (page 84), and MAF_XWriteRead (page 85) to encrypt data before it is transmitted
and decrypted after it is received.

 Consider how sensitive data is reported: Sensitive information, such as passwords, should not
be reported to the NMAS audit log when calling MAF_LogEvent (page 65) or to DS Trace when
calling MAF_Trace (page 76) or MAF_TraceOnError (page 78).

2.3 NMAS Client
This section is an example of how to integrate the NMAS Client into the Novell Client™. The NMAS
Client does not require Novell Client32, and other applications have also integrated with an NMAS
Client. A new NMAS Java* Client is also now available.

The NMAS Client must contain at least the following components:

 Section 2.3.1, “Login Dialog Box,” on page 17

 Section 2.3.2, “NMAS Client Manager,” on page 17
16 NDK: Novell Modular Authentication Services

 Section 2.3.3, “NMAS on Linux,” on page 18

 Login Client Modules (LCM) (see Section 3.5, “Building an NMAS LCM,” on page 34).

2.3.1 Login Dialog Box

The login dialog box is implemented through the Windows 95/98 and Windows NT* Client login
extensions. The master dialog box is changed so that it can be configured to only request the
username, because each login method invokes its own GUI dialog box to request the password, PIN,
or other module-specific information.

The login dialog box is invoked under the current Client32 events. For Windows NT/2000, the login
screen appears when the user has pressed the Ctrl+Alt+Del key sequence.

As shown in Figure 2, the first login dialog box allows the user to select the advanced options
window. This dialog box is also modified to include the ability for the user to request a specific login
sequence that includes one or more of the login methods. The dialog box also includes the ability for
the user to request the Graded Authentication Authorization level (Clearance) by selecting the
NMAS tab.

Figure 2-3 Enhanced Novell Client Login Dialog Box (showing the Sequence field)

2.3.2 NMAS Client Manager

Client32 invokes the NMAS Client Manager after the login screen is completed.

The NMAS Client manager is responsible for the following:

 Creating an NMAS session for the current session.
NMAS Concepts 17

 Establishing a session key using the Novell International Cryptographic Infrastructure (NICI)
Client.

 Storing the login-gathered data as attributes that can be read by the Login Client Module (LCM).

 Returning the status of Login.

 Determining the available login methods supported by this client.

 Initiating the MAF protocol.

 Receiving the “DO” MAF commands and invoking the appropriate LCM modules (see MAF
protocol in Figure 2-2 on page 15 and Figure 2-4 on page 18).

 Upon receipt of the “SUCCESS” MAF command, it receives the credential materials from the
server and places them into the authentication store for use by the Authentication Manager.

2.3.3 NMAS on Linux

Linux servers have been running LSMs on eDirectory and NMAS for many years. However, the
NMAS client has recently been ported to Linux. Consequently, it is now possible to run NMAS LCMs
from a Linux client. This enables you to extend Linux login security by creating a pluggable
authentication module (PAM) that invokes your LCM for additional security. To install the NMAS
client and create a sample LCM and LSM, see “Tasks for Writing a Login Method” on page 23. For
specific information related to Linux, see Section 3.3.4, “Building a Linux LSM,” on page 33 and
Section 3.5.3, “Building a Linux LCM,” on page 35.

2.4 NMAS Server
The NMAS Server contains the following components:

 Section 2.4.1, “NMAS Server Manager,” on page 19

 Section 2.4.2, “Authentication Store,” on page 19

Figure 2-4 provides an overview of how the NMAS Server operates:

Figure 2-4 The NMAS Server and MAF Protocol Architecture

The NMAS Server provides the server side of the MAF Protocol, which negotiates the login sequence
to be used, invokes LSMs, provides an API set that can be used by the LSMs to communicate with the
Login Client Modules (LCMs), and provides an API set (MAF functions) to retrieve and store login
18 NDK: Novell Modular Authentication Services

information in the eDirectory tree. LCMs provide the user interface to prompt the user to supply the
information required for the login method. An LCM then passes information to the LSM for
verification of the user's identity.

2.4.1 NMAS Server Manager

The NMAS Server Manager is invoked when the NMAS module is loaded on the server. This
manager registers with the NCP provider to receive the NMAS NCPs (number 94). This manager also
registers with other transports so that it can obtain requests for authentication. Where application-
specific protocols are used for login, the NMAS Server Manager provides a set of APIs so that Proxy
Services can be implemented.

The Login Manager is responsible for validating the identity of a user so those credentials can be
returned to the Client for use in subsequent login calls.

The NMAS Server manager is responsible for the following tasks:

 Creating an NMAS Session for the current session.

 Receiving MAF requests for login.

 Receiving the Initial MAF Login Request from the client.

 Determining the available login methods supported by this Client and selecting the appropriate
sequence to be used for this session.

 Sending the “DO” MAF commands and invoking the appropriate Login Server Module modules
(see MAF protocol in Figure 2-2 on page 15 and Figure 2-4 on page 18).

 Determining whether the appropriate conditions have been met to log the user in, and if so,
building the required credentials and sending them back to the Client with a SUCCESS status.

 Returning the status of the login.

2.4.2 Authentication Store

To support NMAS, an Authentication Store is added to the eDirectory tree, which consists of a set of
containers, objects, and attributes. The installation program and ConsoleOne snap-ins create and
manage the objects as necessary. Figure 2-5 provides an overview of these components and describes
their functionality.

NOTE: NMAS supports only the authentication of users who have User objects in the system. It does
not support system access by members of other organizations who have some form of enabling or
access credential.

As illustrated in the following diagram, authorization login methods and authorized post login
methods are used to store login secrets and login configurations specific to the login method but not
specific to a user. The Authorized Login Methods container holds the login method objects. There is a
login method object for each login method.

A post login method (PLMO) has an LCM, an LSM, and usually a Method Management Graphical
Interface (MMG). A PLMO contains the signed executable code for the LSMs. Therefore, a method
only needs to be installed once for a tree, not for every server. This simplifies distribution of login
methods.
NMAS Concepts 19

LSM executable code and method login-specific login secret and login configuration information are
stored in the login method objects. The Login Policy object contains login policy information, for
example, login sequences. A login sequence is an ordered list of login methods and post login
methods.

The Security Policy defines a Graded Authentication policy that include categories, labels, clearances,
eDirectory attributes, etc. The User Object has a login secret and login configuration that is specific to
a user and a login method.

Figure 2-5 Authorized Login Method Architecture

Authorized Login Method Container (LMC)

Figure 2-6 shows the Login Method container (LMC) containing the Login Method objects (LMOs).
There is an LMO for each of the login methods that have been installed into the tree. An LMO
contains the signed executable code for the LSMs. LSM code also is provided for the various
platforms (Windows, NetWare, Solaris*, etc.).

Figure 2-6 Authorized Login Method Container (LCM)

The LMO also can be used to store login secrets and login configuration data that is specific to the
login method but not specific to a user. A Login Device object (LD) is specific to an LMO and is
neither managed or created by NMAS. If used, LDs are created and managed by a login method's
MMG.

NOTE: The maximum size of the login configuration and login secret data is 60,000 bytes.
20 NDK: Novell Modular Authentication Services

Authorized Post Login Methods (APLM) Container

Figure 2-7 shows the Authorized Post Login Method container that contains Post Login Method
objects (PLMO). There is a PLMO for each post login method installed into the tree.

Figure 2-7 Authorized Post Login Methods (APLM) Container

The main difference between login methods and post login methods is that post login methods are
invoked after login has been completed. Examples are the Screen Saver and Change Password.

Login Policy

Figure 2-8 shows the Login Policy Object, which contains login sequence definitions. This defines
which login methods are required to authenticate to the network. The login policy is stored within
the eDirectory security container. This attribute is “public read,” which means that a connection can
read the available login sequences whether it is authenticated or not.

Figure 2-8 Login Policy Object

Security Policy Container

Figure 2-9 shows the Security Policy Object, which defines the categories, labels, and signed
eDirectory attribute labels. This object holds the tree-wide graded authentication policy. All servers
in the tree reference the common policy.

Figure 2-9 Security Policy Object
NMAS Concepts 21

Config Store/Secret Store Attributes

NMAS allows the creation of Config Store and Secret Store Attributes on the LMO, PLMO, and User
objects. These are shown in Figure 2-6, Figure 2-7, and Figure 2-10, respectively. The data contained
in these attributes are tagged so that a specific method can access the data from a Login Server
Module (LSM).

Figure 2-10 NMAS User Login Storage Information.

We recommend that you use the Login Method object and Login Device object config/secret store
attributes for static data and the User object config/secret store attributes for dynamic data.

NOTE: The security container is designed to be highly replicated to almost all servers in the tree. For
this reason, all objects under the security container should contain relatively static data. This means
that data stored in PLMOs, LMOs, and LDOs should not be updated on each login. If dynamic data is
desired, you should place this on the user's object or create an object outside the security container
that is not globally replicated.
22 NDK: Novell Modular Authentication Services

3 3Tasks for Writing a Login Method

The NMAS™ SDK allows you to develop a NMAS login method that implements your own login
system using the NMAS framework. As a developer to NMAS, you build a login method to pass
credentials and authenticate to the network through eDirectory™.

Essentially, each login method consists of a Login Client Module (LCM), a Login Server Module
(LSM), and a Method Manager Graphic Interface (MMG) for administrating and installing your
method. To understand the interrelationship of these components, see the Section 2.2, “Login Method
Overview,” on page 14.

NOTE: Ensure that the LSM and LCM are threadsafe.

To preserve the integrity of the login process, only login methods signed by Novell® can be
implemented into the NMAS framework. Before building your login method, contact Novell to
register your method and obtain a unique method number.

As part of this registration process, use the signing tools from the NMAS component (http://
developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service) of the Novell
Developer Kit (NDK) to generate a certificate signing request. To get your method signed and obtain
a unique certificate, contact Kamal Narayan, NMAS Product Manager (mailto:nkamal@novell.com).

NOTE: Login method development can begin before a method number is assigned using the test
method number 1 and the testing procedures described in Section 3.7, “Testing Your NMAS
Methods,” on page 40.

This section contains the following topics:

 Section 3.1, “Building an NMAS Login Method,” on page 23

 Section 3.2, “Generating a Method Signing Certificate Request,” on page 24

 Section 3.3, “Testing-Debugging Unsigned Login Methods,” on page 31

 Section 3.4, “Installing the Clear Text Password Method,” on page 34

 Section 3.5, “Building an NMAS LCM,” on page 34

 Section 3.6, “Enrolling a User with the Clear Text Password,” on page 36

 Section 3.7, “Testing Your NMAS Methods,” on page 40

3.1 Building an NMAS Login Method
To build a NMAS login method, you need to complete these basic tasks, which are described in the
following sections:

1. Generate a Method Signing Certificate.

2. Sign Your NMAS Login Method.
Tasks for Writing a Login Method 23

http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service
mailto:nkamal@novell.com

3. Build a Login Server Module (LSM).

 Section 3.3.2, “Building a Windows LSM,” on page 32.

 Section 3.3.3, “Building a NetWare LSM,” on page 32.

 Section 3.3.4, “Building a Linux LSM,” on page 33.

4. Build a Login Client Method (LCM).

 Section 3.5.2, “Building a Windows LCM,” on page 35.

 Section 3.5.3, “Building a Linux LCM,” on page 35.

 Section 3.5.4, “Building a Java LCM,” on page 36.

5. Enroll the user with the new password.

6. Test the new method. Complete Novell Yes CertifiedTM Program testing and ensure that your
method is enabled for eDirectory. Complete the testing and send the method to Novell or an
authorized Novell testing lab for verification. For more information, see Section 3.7, “Testing
Your NMAS Methods,” on page 40.

3.2 Generating a Method Signing Certificate Request
A Login Server Module (LSM) must be signed to operate under the NMAS framework. To sign a
method, you must use the signing tools located in the c:\novell\ndk\nmas ndk\nmas\sign
directory of the NDK download for NMAS (see NMAS Developer page (http://developer.novell.com/
wiki/index.php/Novell_Modular_Authentication_Service)).

The signing kit consists of a set of batch files that run the appropriate signing programs. These batch
files generate module signing key pairs that are used to request a method certificate from Novell. The
keys also are used to sign your modules.

You need to send your certificate request to Novell, so that a certificate signed for use with the NMAS
signing kit can be produced by Novell and returned to you with your assigned Method ID.

You must have a client Novell International Cryptography Infrastructure (NICI) installed on a
WIN95/98/NT/2000 or workstation to use the signing tools (see the NICI download page (http://
www.novell.com/products/cryptography)).

IMPORTANT: The signing toolkit requires NICI 1.5.7 The signing kit contains both BAT files and
EXE files that are executed from a DOS window on a Windows 95/98/NT/2000 platform. You should
only use the BAT files when using the signing kit.

This section contains the following topics:

 Section 3.2.1, “Steps for Generating a Signing Key,” on page 25

 Section 3.2.2, “Steps for Signing an LSM,” on page 26

 Section 3.2.3, “Packaging an NMAS Method,” on page 27

 Section 3.2.4, “Novell Yes CertifiedTM Program,” on page 31
24 NDK: Novell Modular Authentication Services

http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service
http://www.novell.com/products/cryptography

3.2.1 Steps for Generating a Signing Key

Generating your signing keys is a one-time process that must be done for each method developed for
NMAS:

1 Copy all files from the Method Signing Kit to the directory that is unique to each method. For
example: c:\nmas\tools\methods\xx where xx is a unique name for your method.

You must use a separate directory for each method. Execute all configuration and signing
operations from this directory.

2 Generate a method signing key pair by running keygen.bat.

2a You are prompted for your Vendor Name and a password. The Vendor Name is displayed
by NMAS when this method is loaded. The password is used to protect your module
signing private key on your system. Use the password to complete the certificate request
each time your method is signed.

2b This utility generates two files: private.p7b, your encrypted private key; and self.ber,
your self-signed certificate.

IMPORTANT: Protect your private key appropriately, because your certificate verifies the
modules signed with the private key with your corporate name.

For example:

>cd \nmas\tools\methods\xx\
>keygen
Enter Vendor Name: ACME, Inc.
Password: ********
Retype Password: ********

3 Generate a certification request for your public key by running cr.bat.

3a You must specify an authentication grade by providing the hexadecimal value as the first
argument to cr.bat. You can use the following hex values for the grades supported by
NMAS:

NOTE: Novell reserves the right to change the method grade when processing the
certificate signing request.

3b You are prompted for your password to decrypt your stored private key that is used to sign
your request. This utility generates one file, csr.ber, per certification request.

Grade Hex Value

Logged In 0x00000000

Biometric 0x00200000

Password 0x00800000

Token 0x00400000

Biometric and Password 0x00A00000

Biometric and Token 0x00600000

Password and Token 0x00C00000

Biometric and Password and Token 0x00E00000
Tasks for Writing a Login Method 25

Example for a Biometric and Token method request:

>cr 0x00600000Password: ********

3c Send the file csr.ber to Novell for further information. For more information, see the NMAS
Login Method Registration Form (http://developer.novell.com/devres/ss/nmasform.htm).

3d You will receive two files from Novell after the certification process: cert.ber (your signed
certificate) and mib.ber (your module identification block).

3e Copy these two files to your module-signing directory as defined in Step 1. These two files
are used during the module signing process described in “Steps for Signing an LSM” on
page 26.

3.2.2 Steps for Signing an LSM

Use the following procedure to build and sign an LSM that is named LSMCPWD.NLM.LMO:

1 Code and build the NLM.

On NetWare:

Import the following symbols:

MAF_Begin, MAF_End, MAF_Read, MAF_Write, MAF_WriteRead, MAF_XRead, MAF_XWrite,
MAF_XWriteRead, MAF_PutAttribute, MAF_Get Attribute

The makefile.mak file is provided to assist in constructing your build environment.

On Windows NT:

Link against nmas.lib and include the NMAS header files. The lsmcpwd.dsw and
lsmcpwd.dsp project files are provided as a reference to assist you in constructing your build
environment.

Export the entry points in your module that are called by the NMAS loader during the login
process. It is conventional that the method be included in the entry point name. For example, if
the method number is 9, the entry point name could be LSM00000001 or LSM1.

2 Place the NLM and/or DLL that contains your LSM in the method-signing directory. This is the
directory that contains the signing certificate created in Section 3.2, “Generating a Method
Signing Certificate Request,” on page 24.

3 Run sign.bat to sign the method for execution under NMAS.

3a You must give three arguments to this utility. The first one is the name of the file you want
to sign. The second is the name of your method as provided when the NLM was linked. The
third argument is the name of the entry point in your module that is called by the NMAS
loader.

3b When prompted, provide your password to be used to decrypt the private key and sign the
module (for example, LSM00000001). This utility generates one file: your signed module
with the LMO extension in your method-signing directory.

For example, assuming your module is named LSMCPWD, you gave the NLM the name
NLMNAME when it was linked, and the entry point is LSM00000001, the following command
creates the file LSMCPWD.NLM.LMO that is a signed method that can be installed into NMAS:

>sign LSMCPWD.NLM LSMCPWD.NLM LSM00000001

3c Place the signed method in the appropriate directory to install into NMAS.
26 NDK: Novell Modular Authentication Services

http://developer.novell.com/devres/ss/nmasform.htm
http://developer.novell.com/devres/ss/nmasform.htm

3.2.3 Packaging an NMAS Method

NMAS methods contain both client and server components. Normally, you install an NMAS client
component as a part of its own product install. The server NMAS components, however, can be
installed using the ConsoleOne® create login method snap-in, as described in “Method Creation” on
page 27.

Client Packaging

Client NMAS method packaging is usually done as part of a developer’s normal product install. This
should provide the customer with a more integrated installation, because the NMAS components can
be installed at the same time as the developer’s hardware/device components of the method. The
client install should include the following for NMAS:

1 Place the LCM DLL in the Windows SYSTEM directory. (WinNT/2000 is Winnt/System32. Win95/
98/ME is the Windows/System.)

2 Update the registry setting as described in Step 3 on page 35.

Server Packaging

Methods are packaged into individual directories so that they can be easily distributed to customers
and installed into the tree. The recommended convention is to place the methods under the following
directory scheme:

\nmasMethods\Your Company Name\MethodName

where MethodName is the method root directory of all files related to this method.

Method Creation

The config.txt file, which provides the information needed for the NMAS create login method
snapin to install the method, is placed under the method root directory. The following directories and
files are also placed in the method root directory.

\client A directory that contains the LCM module with the appropriate
installation procedures and instructions.

\ConsoleOne\resources\Securit
y

The directory that contains the method-specific MMG
resource jars.

\ConsoleOne\snapins\Security The directory that contains the method-specific MMG snap-in
jars.

\setup\<lang> Directories that contain text and graphics that might be
internationalized. The lang directory follows the Java locale
format so that the method can support multiple languages.

config.txt The LSM installation and configuration file. This file is
described in “The config.txt File” on page 28.

YOURMETHOD.LMO The LSM/LCM modules that have been signed for use with
NMAS.

SCHEMA.sch An optional file that is used to extend the eDirectory schema
when the method is installed.

readme.txt An optional file that contains information about this method.
Tasks for Writing a Login Method 27

The config.txt File

The installation process for a new login method is driven by a simple configuration file. The name of
this file can be any desired name so long as the file extension is .txt. The suggested name for this file
is config.txt. This file can be created with a simple text editor. The format of the configuration file is:

Parameter = Value

Each entry in the configuration file is limited to a single line. Parameter values are not case-sensitive.
The recognized parameters include the following:

Parameter Description of Value

Name (required) The name of the method. This name is used by default as the name of the login
method object (LMO) in Novell Directory Services (NDS®) eDirectory. This
name can be changed if desired during the installation.

Vendor (required) The name of the vendor of the login method. This name cannot be changed
during the installation process. This value is stored as an attribute of the login
method object (LMO) in eDirectory.

Grade (required) The value of this parameter is one or more of the following tokens:

 Biometric

 Token

 Password

 Logged in

To use more than one of these tokens, the ampersand sign (“&”) is used
between them. For example, if a method includes both token and password
grades the value would be Token & Password.

This value is advisory only. The actual grade accorded to the method is found
in the Login Server Module (LSM) for the method. The advisory grade is stored
as an attribute of the login method object (LMO) in eDirectory.

Method ID (required) This is the Method ID assigned by Novell to the vendor and uniquely identifies
this method. The value can be specified in decimal (for example, 15) or
hexadecimal (for example, 0x0f) or octal (for example, O17). The value of this
parameter is advisory only. The actual value is found in the Login Server
Module (LSM) for this method. The Method ID is stored as an attribute of the
login method object (LMO) in eDirectory.

Method Type (optional) Specifies the type of method. Currently, the only valid value is Certificate.

Description file
(optional, localized)

Specifies the name of the file that holds a brief description of the login method.
The content of this file is stored as an attribute of the LMO. The file is located in
\setup\Language\description_file_name.

License file (optional,
localized)

Specifies the name of the file that holds the text of the vendor’s license. This
license is presented to the user and acceptance of the license is required
before the method can be installed into the directory. The license file must be a
plain text file. For best viewing no line in the license file should be longer than
60 characters. This file is not stored in the directory. The file is located in
\setup\Language\license_file_name.
28 NDK: Novell Modular Authentication Services

Support file (optional,
localized)

Specifies the name of the file that holds information about how to obtain
support for the login method. This could include vendor phone numbers, a URL
on the Web, or other support information. The content of this file is stored as an
attribute of the login method object (LMO) in eDirectory. The file is located in
\setup\Language\support_file_name.

Logo file (optional,
localized)

This file contains the logo (or logos) of the companies that contributed
technology to this login method. The logo file must be in GIF format. The
maximum size for a logo is 345 pixels wide and 175 pixels tall. The logos are
displayed on the last page of the create login method sequence just before the
login method object (LMO) is created. Although this file is a “localized” file, the
vendor can choose to supply only one logo and have it used for all languages.
This can be done by placing this file only in the setup\en (English) directory.
The file is located in \setup\Language\logo_file_name.

Schema file (optional,
not localized)

If the login method requires the eDirectory schema to be extended, then this
parameter specifies the name of the schema extension file (SCH file). During
installation, this file is processed to extend the eDirectory schema as required.

LSM NetWare
(optional, not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for NetWare. The contents of the file are stored in the directory.

LCM NetWare
(optional, not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for NetWare. The contents of the file are stored in the directory.

LSM WinNT (optional,
not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Windows NT. The contents of the file are stored in the directory.

LSM Win_X64
(optional, not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Windows 64-bit. The contents of the file are stored in the directory.

LCM WinNT (optional,
not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Windows NT. The contents of the file are stored in the directory.

LCM Win_X64
(optional, not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Windows 64-bit. The contents of the file are stored in the directory.

LSM Solaris (optional,
not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Solaris. The contents of the file are stored in the directory.

LSM Solaris_64
(optional, not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Solaris 64-bit. The contents of the file are stored in the directory.

LCM Solaris (optional,
not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Solaris. The contents of the file are stored in the directory.

LCM Solaris_64
(optional, not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Solaris 64-bit. The contents of the file are stored in the directory.

LSM Linux (optional,
not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Linux. The contents of the file are stored in the directory.

LSM Linux_X64
(optional, not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Linux 64-bit. The contents of the file are stored in the directory.

LCM Linux (optional,
not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Linux. The contents of the file are stored in the directory.

LCM Linux_X64
(optional, not localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for Linux 64-bit. The contents of the file are stored in the directory.

Parameter Description of Value
Tasks for Writing a Login Method 29

Placement of Files

1 Place the LCM and LSM LMO files in the same directory as the config.txt file.

2 Place the translated versions of the description file, the license file, and the support file in the
following directories:

3 Install the ConsoleOne snapin or the NMAS Method Install iManager plugin (http://
www.novell.com/documentation/nmas311/admin/data/a49tuwk.html#b5il5e8).

Schema Modifications

Normally, the NMAS methods can be implemented without modifications to the schema. However, if
additional objects and attributes are desired, you can create a .sch file that contains your schema
definitions. Samples of these files are found on NetWare servers in the SYS:SYSTEM\SCHEMA directory.
The NMAS Create Login Method object can be configured to extend the schema for you.

Partners who are extending the eDirectory schema should register their extension with Novell
Developer Support (http://developer.novell.com/support).

The NMAS code that extends the schema during creation of a login method requires the schema
elements (attributes and classes) to have assigned ASN1 identifiers that are assigned through the
schema registration process.

LCM AIX (optional, not
localized)

Specifies the name of the file containing the code of the Login Client Module
(LCM) for AIX*. The contents of the file are stored in the directory.

LSM Tru64 (optional,
not localized)

Specifies the name of the file containing the code of the Login Server Module
(LSM) for Tru64. The contents of the file are stored in the directory.

Language Directory Location

Czech cs_CZ

German setup/de

English setup/en

Spanish setup/es

French setup/fr

Italian setup/it

Japanese setup/ja

Dutch setup/nl_NL

Polish setup/pa_PL

Portuguese setup/pt

Russian setup/ru

Parameter Description of Value
30 NDK: Novell Modular Authentication Services

http://www.novell.com/documentation/nmas311/admin/data/a49tuwk.html#b5il5e8
http://developer.novell.com/support
http://developer.novell.com/support

3.2.4 Novell Yes CertifiedTM Program

As part of the developing your method to operate with NMAS, you should give consideration to
having your method Yes CertifiedTM. Products that have successfully completed all testing and
business requirements are identified and can be marketed with a Yes Certified logo.

For more information about Yes CertifiedD, refer to the following URL:

http://developer.novell.com/devnet/yes/page7.html (http://developer.novell.com/devnet/yes/
page7.html)

For developer support tools, refer to:

http://developer.novell.com/devres/ss (http://developer.novell.com/devres/ss)

3.3 Testing-Debugging Unsigned Login Methods
The NMAS product ships with a number of Novell-supported methods and the NMAS SDK (http://
developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service) includes a clear text
password method and other NMAS-related samples. (See the NMAS Sample Code and Demo
Applications (http://developer.novell.com/wiki/index.php/
Novell_Modular_Authentication_Service_Samples).)

Because this sample method has not be signed using the signing kit mentioned above, it is necessary
to test it using the debug version of NMAS. The debug version of NMAS expects to find the LSM on
the file system as opposed to the release version of NMAS, which looks for the LSM in eDirectory
stored as an Login Method Object (LMO).

IMPORTANT: In order for these samples to work, you must first download and install the NLM and
NetWare Libraries for C (http://developer.novell.com/wiki/index.php/
NLM_and_NetWare_Libraries_for_C_%28including_CLIB_and_XPlat%29). Project files and
makefiles expect the CLIB NDK at c:\novell\ndk\clib on Windows and /opt/novell/ndk/clib
on Linux.

To build a Login Server Module (LSM), follow the procedures outlined in:

 Section 3.3.1, “Requirements for Building an LSM,” on page 31

 Section 3.2.2, “Steps for Signing an LSM,” on page 26

 Section 3.2.3, “Packaging an NMAS Method,” on page 27

 Section 3.2.4, “Novell Yes CertifiedTM Program,” on page 31

3.3.1 Requirements for Building an LSM

The following are the requirements for building an LSM:

 A Development environment (Visual Studio, Eclipse, Watcom, Metroworks, etc.) and the Novell
Developer Kit (NDK). For more information, see Section 1.2, “Selecting a Compiler,” on page 11.

 The file maf.h, located in current nmas ndk\nmas_server_sdk\sdkinc.

 The file nmasapi.h, located in current nmas ndk\nmas_server_sdk\sdkinc.
Tasks for Writing a Login Method 31

http://developer.novell.com/devnet/yes/page7.html
http://developer.novell.com/devres/ss
http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service
http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service_Samples
http://developer.novell.com/wiki/index.php/Novell_Modular_Authentication_Service_Samples
http://developer.novell.com/wiki/index.php/NLM_and_NetWare_Libraries_for_C_%28including_CLIB_and_XPlat%29
http://developer.novell.com/wiki/index.php/NLM_and_NetWare_Libraries_for_C_%28including_CLIB_and_XPlat%29

 The file nmaserr.h, located in current nmas ndk\nmas_server_sdk\sdkinc

 A Signing Certificate from Novell as requested in Section 3.2, “Generating a Method Signing
Certificate Request,” on page 24.

3.3.2 Building a Windows LSM

1 Build the LSM by executing the build.bat

c:\novell\ndk\Current NMAS
NDK\nmas_sample_code\login_method\lsm\win32\src\build.bat

WARNING: The nmas.lib that links with the LSM is NOT the same nmas.lib that links with
the LCM.

2 Create the directory structure c:\novell\nds\nmas\lsm on Windows NT/2000/XP.

NOTE: The directory nmas\lsm is not there by default.

3 Create the c:\novell\nds\nmas\lsm\idlist.txt file that contains the following line:
1 lsmcpwd.dll LSM00000001

NOTE: The first field idlist.txt is the method ID and the method ID should be represented as
a hex number.***

4 Rename c:\novell\nds\nmas.dlm to nmas.dlm.rel (save the release version).

5 Add C:\Novell\NDS to your Path environment variable.

6 Copy the C:\Novell\ndk\nmas ndk/\nmas_server_sdk\win32\bin\debug\nmas.dlm to
c:\novell\nds.

7 Install the LSM (see Section 3.4, “Installing the Clear Text Password Method,” on page 34).

8 Restart the eDirectory service.

8a Select Novell eDirectory Services from the Control Panels Window or the Desktop.

8b Press the Shutdown button and wait until this button is disabled

8c Click the Startup button.

TIP: You can also stop and start the eDirectory service using the control panel window
located in the services icon of the eDirectory Administrative Tools.

3.3.3 Building a NetWare LSM

For NetWare development, use either the MetroWerks CodeWarrior compiler (available with the
Novell Software Evaluation Library (http://developer.novell.com/brochure)) or the free Watcom 11.0c
compiler (http://www.openwatcom.org) from a Windows system.

1 Build the LSM by executing the following .bat files in the order indicated:

c:\novell\ndk\nmas ndk\nmas_sample_code\login_method\lsm\nw\metrowerks\env.bat

c:\novell\ndk\nmas ndk\nmas_sample_code\login_method\lsm\nw\metrowerks\build.bat

NOTE: If using the watcom compiler, replace metrowerks in the above path with watcom.
32 NDK: Novell Modular Authentication Services

http://developer.novell.com/brochure
http://www.openwatcom.org
http://www.openwatcom.org

2 Create the following directory structure required by the debug version of NMAS
sys:\system\nmas\lsm

3 Copy the LSM to this debug directory
copy c:\novell\ndk\nmas ndk\nmas_sample_code\login_method\lsm\nw\debug
sys:\system\nmas\lsm

4 Create the sys:\system\nmas\lsm\idlist.txt file required by the debug version of NMAS
that contains the following line:
1 lsmcpwd.nlm LSM00000001

5 Save the release version of NMAS and switch to the debug version
ren sys:\system\nmas.nlm sys:\system\nmas.nlm.rel
copy c:\novell\ndk\nmas ndk\nmas_server_sdk\nw\bin\debug\nmasdbg.nlm
sys:\system\nmas.nlm

6 Install the LSM (see Section 3.4, “Installing the Clear Text Password Method,” on page 34).

7 Restart NetWare by executing
restart server

3.3.4 Building a Linux LSM

1 Compile the LSM by executing the Linux.mak from the debug directory
cd /opt/novell/ndk/nmas ndk/sample/methodExample/lsm/unix/Linux/debugmake -f
../Linux.mak

2 Create the following directory structure required by the debug version of NMAS
/var/nds/nmas-methods/NMAS/LSM

NOTE: The directory /var/nds/nmas-methods only exists for eDirectory 8.7.3.x. For eDirectory,
8.8 the directory (by default) is /var/opt/novell/eDirectory/data/nmas-methods.***

3 Copy the LSM to this debug directory
cp /opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/lsm/unix/Linux/
debug/lsmcpwd.so /var/nds/nmas-methods/NMAS/LSM

4 Create the /var/nds/nmas-methods/NMAS/LSM /IDLIST.TXT required by the debug version of
NMAS with the following line:
1 lsmcpwd.so LSM00000001

5 Save the release version of NMAS and switch to the debug version
mv /usr/lib/nds-modules/libnmas.so /usr/lib/nds-modules/libnmas.so.relcp /opt/
novell/ndk/nmas ndk/nmas/nmas_server_sdk/linux/bin/debug/libnmas.so /usr/lib/
nds-modules

NOTE: The directory /usr/lib/nds-modules is for eDirectory 8.7.3.x, while the corresponding
directory for eDirectory 8.8 is /opt/novell/eDirectory/lib/nds-modules.***

6 Install the LSM (see Section 3.4, “Installing the Clear Text Password Method,” on page 34).

7 Restart eDirectory
/etc/init.d/ndsd restart

3.3.5 NMAS NDK Sample Code

The NMAS Sample Code (http://developer.novell.com/ndk/doc/samplecode/nmas_sample/
index.htm) demonstrates how to implement many of the API functions described in this document.
Tasks for Writing a Login Method 33

http://developer.novell.com/ndk/doc/samplecode/nmas_sample/index.htm

3.4 Installing the Clear Text Password Method
1 Create a ..\ndk\nmas ndk\nmas_sample_code\login_method\config.txt file used to install

the method that contains the following:

name=lsmcpwd
Vendor=Novell,Inc.
grade=Logged in
methodid =1

NOTE: ***The value of the name field can only contain the following characters:

abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.&-!#$%()*[]^_~

2 Using ConsoleOne, install the method.

2a On a Windows console, launch ConsoleOne from the icon located on the desktop.

2b On a Linux console, launch ConsoleOne by executing the following command:
/usr/ConsoleOne/bin/ConsoleOne

2c Select the NDS® object and then click on the tree in the toolbar and enter the following
login credentials:
Login name: admin
Password: admin’s NDS password
Tree: 127.0.0.1
Context: novell

2d From ConsoleOne, expand the NDS tree including the Security container object. Right click
on the Authorized Login Methods container, then select New, then click Object (SAS:NMAS
Login Method), and then click OK.

2e From the New Login Method Window, use the Browse button to select the
c:\novell\ndk\Current NMAS NDK\nmas_sample_code\login_method\config.txt file
and click the Open button.

2f Follow the prompts and select all of the default settings.

3 On Linux you can also install the method using nmasinst.
Format:
nmasinst -addmethod <admin.context> <treeName> <configFile>
Example:
nmasinst -addmethod admin.novell corp-tree ./config.txt

3.5 Building an NMAS LCM
To build a Login Client Module (LCM), follow the procedures outlined in:

 Section 3.5.1, “Requirements for Building an LCM,” on page 35

 Section 3.5.2, “Building a Windows LCM,” on page 35

 Section 3.5.3, “Building a Linux LCM,” on page 35

 Section 3.5.4, “Building a Java LCM,” on page 36
34 NDK: Novell Modular Authentication Services

3.5.1 Requirements for Building an LCM

The following are the requirements for building an LCM:

 An development environment such as Microsoft Visual C++ Version 6 or later, Eclipse, etc. and
the Novell Developer Kit (NDK).

 The file maf.h, located in Current NMAS NDK\nmas_client_sdk\sdkinc\legacy

 The file nmasapi.h, located in Current NMAS NDK\nmas_client_sdk\sdkinc\

 The file nmaserr.h, located in Current NMAS NDK\nmas_client_sdk\sdkinc\

3.5.2 Building a Windows LCM

1 Build the LCM by executing the build.bat
c:\novell\ndk\Current NMAS

NDK\nmas_sample_code\login_method\lcm\win32\build.bat

WARNING: The nmas.lib that links with the LCM is NOT the same nmas.lib that links with the
LSM.

2 Copy the cpasswd.dll to the c:\Windows\System32 directory
copy c:\novell\ndk\Current NMAS
NDK\nmas_sample_code\login_method\lcm\win32\cpasswd.dll c:\Window\System32

3 Register the LCM with the Windows Registry by adding the following String Value entry
[HKEY_LOCAL_MACHINE\SOFTWARE\Novell\NMAS\1.0\LCM
Paths]"00000001"="C:\\WINDOWS\\System32\\cpasswd.dll"

3.5.3 Building a Linux LCM

1 Compile the LCM by executing the Linux.mak from the debug directory.
cd /opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/lcm/linux/debug make
-f ../Linux.mak

2 Copy the LCM shared object library to the /usr/lib directory.
cp /opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/lcm/linux/debug/
libcpwdlcm.so /usr/lib

3 Execute build.sh to create a GTK sharp password prompt window
/opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/lcm/linux/cpwdgui/
build.sh

4 Create following directory structure used by the clear text password LCM for the popup
window.
/opt/novell/nmas/methods/clrpwd

5 Copy the following files from /opt/novell/ndk/nmas ndk/sample/methodExample/lcm/linux/
cpwdgui to /opt/novell/nmas/methods/clrpwd
cpwdguicpwdgui.gladeNmas_simple.bmp

6 Install the Linux NMAS Client located at /opt/novell/ndk/nmas ndk/linux by executing:
rpm ivh /opt/novell/ndk/nmas ndk/linux/bin/novell-nmasclient.i386.rpm

This step installs the NMAS Client at /opt/novell/nmas/client/ and modifies the /etc/ld.so.conf
file to include /opt/novell/nmas/client/lib in the ldconfig path
Tasks for Writing a Login Method 35

7 Create an /etc/nmasclnt.conf file by executing the following commands:
/opt/novell/nmas/client/bin/ncc -c create/opt/novell/nmas/client/bin/ncc -ma 1
module=libcpwdlcm.so network_func=LCM00000001

8 Compare your /etc/nmasclnt.conf with the following:

###
Section: Configuration File Information
###
[config_info]
version = 2
modification_date = Apr 21, 2005
[/config_info]

###
Section: NMAS Client Information
###
[client_info]
version = 3.1.0.4
build_date = Apr 1, 2005
description = NMAS Client, Linux
[/client_info]

###
cd ..cpw# Section: List of Methods
###
[method_list]

[method]
method_ID = 1
module = libcpwdlcm.so
network_func = LCM00000001
[/method]

[/method_list]

3.5.4 Building a Java LCM

1 Build the Java LCM by executing
/opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/lcm/java/build.sh

3.6 Enrolling a User with the Clear Text Password
After creating and installing the clear text password LSM and LCM and installing the method, you
must assign the clear text password to a user object. The following sections discuss this topic:

 Section 3.6.1, “Using ConsoleOne on Windows,” on page 37

 Section 3.6.2, “Using Method Management APIs on Linux,” on page 37
36 NDK: Novell Modular Authentication Services

3.6.1 Using ConsoleOne on Windows

Using ConsoleOne with the clear text password snap-in is the easiest way to assign the clear text
password to a user object. However, all NMAS snap-ins for ConsoleOne only work on Windows
because they rely on NMASWrap.dll. Use the following procedure:

1 Install the latest version of ConsoleOne on a Windows NT/2000/XP system. By default
ConsoleOne is installed at c:\novell\consoleone on a Windows system.

2 Install a Java JDK.

3 Compile the Clear Text Password ConsoleOne snap-in by executing the build.bat file
c:\novell\ndk\nmas ndk\nmas_sample_code\login_method\mgmt\consoleone\build.bat

4 Copy the cpwd.jar to the ConsoleOne snap-ins directory
copy c:\novell\ndk\nmas
ndk\nmas_sample_code\login_method\mgmt\consoleone\cpwd.jar
c:\novell\consoleone\1.2\snapins\Security

5 Restart ConsoleOne.

3.6.2 Using Method Management APIs on Linux

For a cross platform solution, you will have to run an application that uses the NMAS Method
Management APIs. These APIs require you to establish an SSL connection to the server using the
server’s Trusted Root Certificate. These APIs are available for both C and Java.

Figure 3-1 on page 38 shows a Java sample application (SetClrPwdApp) that uses the Method
Management APIs to set a user’s clear text password. For Java, these APIs are included in the
NMASToolkit.jar file.
Tasks for Writing a Login Method 37

Figure 3-1 The NMAS Clear Password Utility GUI

The next few steps demonstrate how to export a Trusted Root Certificate from eDirectory and store it
in a Java key store used by the sample application:

 “Using ConsoleOne to Export the Trusted Root Certificate” on page 38

 “Creating a New User in eDirectory” on page 39

 “Adding a Trusted Root Certificate to a Sun Keystore” on page 40

Using ConsoleOne to Export the Trusted Root Certificate

1 On Linux start ConsoleOne by executing the following:
/usr/ConsoleOne/bin/ConsoleOne

2 Select the NDS object and then click on the tree in the toolbar and enter the following login
credentials:
Login name: admin
Password: <admin’s NDS password>
Tree: 127.0.0.1
Context: novell
38 NDK: Novell Modular Authentication Services

Figure 3-2 Novell ConsoleOne GUI

3 Expand the NDS tree and select the organization where the server object is located.

3a Select the properties of the “SSL CertificateDNS - linux object”, and then click the
Certificate tab.

3b Make sure Trusted Root Certificate is selected on the tab’s sub menu items and then click
the Export button and take all the defaults. This will create a TrustedRootCert.der file in the
user’s home directory.

4 Set the server certificate to be used for an SSL connection.

4a Select the properties of the LDAP Server - linux object, and then click on the SSL/TLS
Configuration tab.

4b Click on the browse button for Server Certificate and select the SSL CertificateDNS object.

4c Click Apply, and then click OK.

Creating a New User in eDirectory

1 Select the novell container object and then click the New User button on the toolbar.

2 Enter the Name and Surname fields and click the OK button and enter the NDS password.

3 Close ConsoleOne.
Tasks for Writing a Login Method 39

Adding a Trusted Root Certificate to a Sun Keystore

1 Create a certificates directory in your user’s home directory.

1a From a command prompt window, execute the following command:
java sun.security.tools.KeyTool -import -alias TrustedCert -file ~/

TrustedRootCert.der -keystore~/certs/sslkey.keystore

2 Use the SetClrPwdApp application to set the clear text password on a user object and assign a
different password than the user’s NDS password.

3 Build the clear password utility by executing the build.sh
/opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/mgmt/ldap/build.sh

4 Run the utility by executing the run.sh
/opt/novell/ndk/nmas ndk/nmas_sample_code/login_method/mgmt/ldap/run.sh

3.7 Testing Your NMAS Methods
Once your NMAS methods are created, you can test them by following the procedures described in
the following sections:

 Section 3.7.1, “Testing on Windows with the Novell Client,” on page 40

 Section 3.7.2, “Testing the Linux LCM,” on page 42

 Section 3.7.3, “Testing the Java LCM,” on page 43

3.7.1 Testing on Windows with the Novell Client

1 Right click on the N in the icon tray at the bottom of the screen.

Figure 3-3 Windows Icon Tray

2 Select NetWare Connections.
40 NDK: Novell Modular Authentication Services

Figure 3-4 NetWare Connections Tree

3 Right click on the N again in the Windows icon tray and select Netware Login.

Figure 3-5 Novell Login GUI

4 Enter the username you assigned a clear text password to.

5 Click the Advance button and then select the NMAS tab.

6 Click on the Sequence browse button, then select lsm from the list, and then press OK to close
the window.
Tasks for Writing a Login Method 41

7 Click on OK to login.

8 When prompted enter the clear text password you assigned to the user.

Figure 3-6 NMAS Clear Password GUI

3.7.2 Testing the Linux LCM

1 Build the sample saslbind application at /opt/novell/ndk/nmas ndk/nmas_sample_code/
nmas_client/ by simply entering make to execute the makefile.
/opt/novell/ndk/nmas ndk/nmas_sample_code/nmas_client/make

2 Execute the command /opt/novell/ndk/nmas ndk/nmas_sample_code/nmas_client/
saslbind application.

Example: jdoe@linux:/opt/novell/ndk/nmas_2005.02.24/nmas_sample_code/nmas_client > ./
saslbind localhost 389 cn=jdoe,o=novell lsmcpwd

3 At the pop-up window, enter the clear text password, and then click OK.

Figure 3-7 NMAS Clear Password GUI

4 In the terminal window, you should see that the login was successful.
42 NDK: Novell Modular Authentication Services

Example: NMAS SASL Bind:

ldap host : localhost
ldap port : 389
ldap bind DN : cn=jdoe,o=novell
nmas sequence : lsmcpwd
password :

NMAS SASL Bind was successful

3.7.3 Testing the Java LCM

1 Build the Java LCM test application by executing
/opt/novell/ndk/nmas ndk/nmas_sample_code/nmas_java_client/ldap_login/build.sh

2 Test the Java LCM by executing the LCMTestApp
/opt/novell/ndk/nmas ndk/nmas_sample_code/nmas_java_client/ldap_login/run.sh

Figure 3-8 Java LCM Tester GUI
Tasks for Writing a Login Method 43

44 NDK: Novell Modular Authentication Services

4 4Multiple Authentication Framework
Functions

The Multiple Authentication Framework (MAF) functions allow you to develop a Login Server
Module (LSM) and a Login Client Module (LCM). LSMs are written in C, while LSMs can be written
in both the C and Java development languages. The following sections describe how these functions
are used to develop LSMs and LCMs.

 Section 4.1, “MAF Programming Model,” on page 46

 Section 4.2, “NMAS Attribute IDs,” on page 47

 Section 4.3, “MAF C Functions,” on page 51

 Section 4.4, “MAF Java Functions,” on page 54

 Section 4.5, “MAF C Function Listing,” on page 54
Multiple Authentication Framework Functions 45

4.1 MAF Programming Model
To access NMAS™ and communicate with each other, the LCM and LSM follow a client/server
model, where the NMAS login method invokes and governs the functions. These functions cannot be
called directly from other applications.

Data is exchanged between the LCM and the LSM through the MAF_Write and MAF_Read (or the
MAF_WriteRead), or the MAF_XWrite and MAF_XRead (or MAF_XWriteRead). The MAF_XWrite
and MAF_XRead functions encrypt the data before it is transported and decrypt it after it is
transported.

The MAF_GetAttribute function is available for the method to obtain data previously provided to
Novell Modular Authentication Services (NMAS), such as username, password, requested clearance,
and additional authentication information.

The modules must both execute the MAF_End function to provide NMAS with the status of this
login method. A zero status specifies success and a non-zero status specifies failure. The module
function return value is always zero (success) unless there is a fatal system error.

Examples of fatal system errors include a failure in the communication between the LCM and LSM
(for example, MAF_Read or MAF_Write return an error) or failure to allocate memory. If an error
(non-zero) value is returned from the LCM or LSM, NMAS is terminated and the login session fails.

Sample Login Method: The following code shows the basic transfer of authentication data from the
LCM to the LSM:

Login Client Module (LCM) Login Server Module (LSM)

LCM00000001 (MAF_HANDLE mh) LSM00000001 (MAF_HANDLE mh)

{

 MAF_Begin(mh);

{

 MAF_Begin(mh);

Obtain login information from NMAS.

 MAF _GetAttribute (mh,....

LCM processes data to send to LSM. ---> MAF_Read(mh,&rlen,rbuf);

MAF_WriteRead(mh,wlen,wbuf,&rlen,rbuf
)

LSM processes Read

LSM processes Read

<--- MAF_Write(mh,wlen,wbuf);

WriteRead can be used either in the LCM or LSM
so that multiple exchanges can be done.

WriteRead can be used either in the LCM or LSM so
that multiple exchanges can be done.

 MAF_End(mh,status,0,0); MAF_End(mh,status,0,0);

 return(0); // Unless FATAL error

}

 return(0); // Unless FATAL error

}

46 NDK: Novell Modular Authentication Services

4.2 NMAS Attribute IDs
The following table describes the NMAS Attribute Identifiers and whether or not they can be used
for MAF_GetAttribute and MAF_PutAttribute (page 72) calls, and whether or not they require a non-
null tag parameter.

Name
C
Valu
e

Requires
a non-
null tag
paramet
er

MAF_
Put
Attribut
e

NMAS_
Put
Attribut
e

Description

NMAS_AID_USERNAME 1 X Unicode* string that can
contain the typeless, dot-
delimited representation of
the user distinguished
name.

NMAS_AID_TREENAME 2 X Unicode string that can
contain the tree name.

NMAS_AID_DS_CONTEXT 3 X Deprecated.

NMAS_AID_REQUESTED_
CLEARANCE

4 X Unicode string that can
contain a clearance
entered by the user.

NMAS_AID_REQUESTED_READ_
CLEARANCE (Obsolete; replaced
with NMAS_AID_REQUESTED_
CLEARANCE.)

4 X Unicode string that can
contain a clearance
entered by the user.

NMAS_AID_REQUESTED_WRITE_
CLEARANCE

5 Deprecated.

NMAS_AID_PASSWORD 6 X X Unicode string that can
contain a password
entered by the user.

NMAS_AID_PIN 7 X X Unicode string that can
contain a PIN entered by
the user; only used
internally by NMAS.

NMAS_AID_NAME_SPACE 8 Unicode string. This
attribute is currently not
used by NMAS.

NMAS_AID_ROLE 9 Unicode string. This
attribute is currently not
used by NMAS.

NMAS_AID_CLEARANCE_FLAG 10 Integer value. This
attribute is currently not
used by NMAS.

NMAS_AID_REQUESTED_
METHODS

11 X Unicode string which
contains the login
sequence requested by
the user.
Multiple Authentication Framework Functions 47

NMAS_AID_MAF_CONTEXT 12 This attribute is for NMAS
internal use only.

NMAS_AID_SERVER_MAF_
HANDLE

13 This attribute is for NMAS
internal use only.

NMAS_AID_CLIENT_MAF_
HANDLE

14 This attribute is for NMAS
internal use only.

NMAS_AID_SESSION_CONTEXT 15 This attribute is for NMAS
internal use only,

NMAS_AID_CONNECTION 16 X This attribute is for NMAS
internal use only.

NMAS_AID_LDAP_CONTEXT 17 This attribute is for NMAS
internal use only.

NMAS_AID_LM_CONFIG_DATA 18 X X Method-specific data
stored in the login
configuration store
attribute of the login
method object. Only
available to LSMs.

NMAS_AID_LM_SECRET_DATA 19 X X Method-specific data
stored in the login secret
store attribute of the login
method object. Only
available to LSMs.

NMAS_AID_LD_CONFIG_DATA 20 X X Currently not supported.
Intended to be method-
specific data stored in the
login configuration store
attribute of the login device
object. Only available to
LSMs.

NMAS_AID_LD_SECRET_DATA 21 X X Currently not supported.
Intended to be method-
specific data stored in the
login secret store attribute
of the login device object.
Only available to LSMs.

NMAS_AID_USER_CONFIG_DATA 22 X X Method-specific data
stored in the login
configuration store
attribute of the user object.
Only available to LSMs.

NMAS_AID_USER_SECRET_DATA 23 X X Method-specific data
stored in the login secret
store attribute of the user
object. Only available to
LSMs.

Name
C
Valu
e

Requires
a non-
null tag
paramet
er

MAF_
Put
Attribut
e

NMAS_
Put
Attribut
e

Description
48 NDK: Novell Modular Authentication Services

NMAS_AID_USER_GLOBAL_
CONFIG_DATA

24 X X Global data (data available
to all login methods) stored
in the login configuration
store attribute of the user
object. Only available to
LSMs.

NMAS_AID_USER_GLOBAL_
SECRET_DATA

25 X X Global data (available to
all login methods) stored in
the login secret store
attribute of the user object.
Only available to LSMs.

NMAS_AID_NETWORK_ADDRESS 26 X Binary string that can
contain the network
address (for example, IP
or IPX) of the client. Only
available to LSMs.

NMAS_AID_LCM_CALLBACK 27 X Callback routine used by a
proxy LCM to send data
back to the proxy.

NMAS_AID_GA_INFO 28 Binary data that represents
the clearance that is
assigned to the session
when login has completed
successfully. Only
available to LSMs.

NMAS_AID_DISCONNECTED_
FLAG

29 Indicates whether NMAS
is running in disconnected
mode. Only available to
LCMs. Not currently
supported.

NMAS_AID_LM_DN 30 Unicode string that
contains the typeless, dot-
delimited distinguished
name of the login method
object associated with the
current login method. Only
available to LSMs.

NMAS_AID_LM_GLOBAL_
CONFIG_DATA

31 X Global data (available to
all login methods) stored in
the login configuration
store attribute of the login
method object. Only
available to LSMs.

Name
C
Valu
e

Requires
a non-
null tag
paramet
er

MAF_
Put
Attribut
e

NMAS_
Put
Attribut
e

Description
Multiple Authentication Framework Functions 49

NMAS_AID_LM_GLOBAL_SECRET
_DATA

32 X Global data (available to
all login methods) stored in
the login secret store
attribute of the login
method object. Only
available to LSMs.

NMAS_AID_GET_PASSWORD_
POLICY_DN

33 Unicode string that
contains the typeless, dot-
delimited distinguished
name of the password
policy object associated
with the user object. Only
available to LSMs.

NMAS_AID_PROMPT_FOR_
PASSWORD

34 Indicates to the Windows
LCM that a password was
not provided by calling the
application and that the
LCM is expected to prompt
for the password if
necessary. Only available
to Windows LCMs.

NMAS_AID_OPTIONS 35 Options in the MAF
Handle, only for
MAF_GetAttribute
(page 59). Only available
to LCMs.

NMAS_AID_FEATURES 36 Not currently used. Only
available to LCMs.
MAF_GetAttribute.

NMAS_AID_PWD_WARNING 37 X eDirectory™ error code
returned by an NDS login
method when the
password is expired and is
using grace logins. Only
available to LCMs. (See
MAF_GetAttribute
(page 59).)

NMAS_AID_VERIFY_ONLY 38 Indicates that the user
secrets are only verified.
All login restrictions except
for intruder lockout are
ignored when this AID is
set to a non-zero value.
Only available to LSMs.
(See MAF_GetAttribute
(page 59).)

Name
C
Valu
e

Requires
a non-
null tag
paramet
er

MAF_
Put
Attribut
e

NMAS_
Put
Attribut
e

Description
50 NDK: Novell Modular Authentication Services

4.2.1 NMAS AID Options

The following values of MAF_GetAttribute (page 59) might be returned when the AID is
NMAS_AID_OPTIONS:

4.3 MAF C Functions
 Section 4.3.1, “MAF Attribute Functions,” on page 51

 Section 4.3.2, “MAF Login State Functions,” on page 51

 Section 4.3.3, “MAF Memory Functions,” on page 51

 Section 4.3.4, “MAF Password Functions,” on page 52

 Section 4.3.5, “MAF Trace Message Functions,” on page 52

 Section 4.3.6, “MAF Transport Functions,” on page 52

4.3.1 MAF Attribute Functions

These functions might be used by LCMs and LSMs to retrieve login session information and user
information.

 MAF_GetAttribute (page 59)

 MAF_PutAttribute (page 72)

4.3.2 MAF Login State Functions

These functions must be called by LCMs and LSMs to record state information with NMAS:

 MAF_Begin (page 56)

 MAF_End (page 57)

4.3.3 MAF Memory Functions

These functions can be used by LCMs and LSMs to allocate and free memory from the heap:

 MAF_MemFree (page 68)

 MAF_MemMalloc (page 69)

 MAF_MemRealloc (page 70)

Define Name Value Description

NMAS_OPT_NO_PROMPT_FOR_PWD 0x00000020 Does not prompt for a method password.

NMAS_OPT_LOGIN_ONLY 0x00000040 Does a login only, without allowing a
password change.

NMAS_OPT_NO_METHOD_UI 0x00000080 The method should not display any user
interface.

NMAS_OPT_VERIFY 0x00000100 Verifies the password without logging in.
Multiple Authentication Framework Functions 51

4.3.4 MAF Password Functions

These functions can be used by LCMs and LSMs to send information between the LSM and the LCM:

 MAF_AllowPasswordSet (page 55)

 MAF_GetPassword (page 61)

 MAF_PolicyCheck (page 71)

 MAF_SetPassword (page 75)

4.3.5 MAF Trace Message Functions

These functions enable the LSM to write trace messages to the eDirectory trace log:

 MAF_Trace (page 76)

 MAF_TraceEnabled (page 77)

 MAF_TraceOnError (page 78)

4.3.6 MAF Transport Functions

These functions can be used by LCMs and LSMs to send information between the LSM and the LCM:

 MAF_Read (page 73)

 MAF_Write (page 79)

 MAF_WriteRead (page 80)

 MAF_XRead (page 82)

 MAF_XWrite (page 84)

 MAF_XWriteRead (page 85)

4.3.7 MAF Event Log Function

This function allows login methods to add audit log events to the NMAS audit log:

MAF_LogEvent (page 65)

4.3.8 MAF Data Store Functions***

The MAF Data Store Functions (MAFDS) functions are intended to replace the NWDS functions and
new login methods should use the MAFDS functions. We created the MAFDS API to replace NWDS
functions that are not available on the UNIX platforms.

Developers should use the MAFDS API if you:

 Have used NWDS functions in your previous methods.

 Need to read data from eDirectory that’s not accessible from calling MAF_GetAttribute
(page 59). MAF_GetAttribute is sufficient for most developers.

The following functions may be used by LSMs to read objects and attributes from eDirectory:

 MAFDS_CreateContext (page 88)
52 NDK: Novell Modular Authentication Services

 MAFDS_FreeContext (page 90)

 MAFDS_GetValueData (page 96)

 MAFDS_InsertModValue (page 97)

 MAFDS_ListContainerEntries (page 99)

 MAFDS_ModifyEntry (page 100)

 MAFDS_ReadAttributeValues (page 102)

 MAFDS_VALUE_DATA (page 106)

NOTE: In NMAS 3.1, these functions should be used to create all new NMAS methods instead of
previous NWDS functions.

MAFDS Operation Constants

The following values are options for MAFDS_InsertModValue (page 97):

Table 4-1 Values for the “operation” parameter of MAFDS_InsertModValue.

MAFDS Syntax Constants

Table 4-2 Syntax constants for the MAFDS functions.

Value Description

MAFDS_MODOP_ADD_ATTR Adds a value to an attribute.

MAFDS_MODOP_MODIFY Changes a value for a single-valued attribute, or adds a value to a
multi-valued attribute.

MAFDS_MODOP_DEL_VALUE Removes a value from an attribute.

MAFDS_MODOP_DEL_ATTR Removes an attribute and all of its values.

Value Description

MAFDS_SYN_DISTNAME Specifies the Distinguished Name.

MAFDS_SYN_CE_STRING Specifies a case-exact string.

MAFDS_SYN_CI_STRING Specifies a case-ignore string.

MAFDS_SYN_BOOLEAN Specifies a Boolean value.

MAFDS_SYN_INTEGER Specifies an integer.

MAFDS_SYN_OCTET_STRING Specifies a string containing binary data.

MAFDS_SYN_TIME Specifies time in seconds (time_t).
Multiple Authentication Framework Functions 53

4.4 MAF Java Functions
The NMAS MAF Java library provides methods to develop a Login Server Module (LSM) and a
Login Client Module (LCM), as described in Section 4.1, “MAF Programming Model,” on page 46.
The common Java interface transforms the function-based C client API into an object-oriented Java
client API. Because the library is Java-based, it is portable across multiple platforms. This extensible,
modular design enables new library features to be added without impacting applications that use its
functions.

4.4.1 Library Architecture

The NMAS library provides a common, object-oriented interface to NMAS. Additional
implementations can be added to the library without impacting the Java applications. The Java
interfaces uses the following classes:

 MAF— Defines the Multiple Authentication Framework (MAF) to create a login server. For
specific implementation of this class, see the MAF.java class (../api/index.html).

 ClearPasswordLCM— Creates the clear text password method for the login client module
(LCM). For specific implementation of this class, see the ClearPasswordLCM class (../api/
index.html).

4.4.2 NMAS Java LCM on Linux

The MAF class makes up most of the API. The MAF class manages authentication, while most other
classes deal with functionality involving available Java NMAS login methods.

Currently there is no support for NMAS Client methods on Linux. However, it is possible to use a
Java LCM on Linux to achieve authentication from a Linux client. Also, a Java LCM makes it possible
to authenticate from a servlet or portlet.

To configure and test the example Clear Text Password method in the NMAS NDK on Linux using a
Java LCM and a test application, follow the procedures provided in NMAS Java LCM on Linux
(http://developer.novell.com/wiki/index.php/Java_LCM_for_Linux). To see clear text sample method,
go to the Java LCM sample (http://developer.novell.com/ndk/doc/samplecode/nmas_sample/
index.htm).

You should also be familiar with the following NDK sections:

Section 3.4, “Installing the Clear Text Password Method,” on page 34
Section 3.5, “Building an NMAS LCM,” on page 34
Section 3.6, “Enrolling a User with the Clear Text Password,” on page 36

4.5 MAF C Function Listing
The following section contains the following Multiple Authentication Framework (MAF) C functions,
which enable LSMs to retrieve and manage the user’s password:
54 NDK: Novell Modular Authentication Services

../api/index.html
../api/index.html
http://developer.novell.com/wiki/index.php/Java_LCM_for_Linux
http://developer.novell.com/ndk/doc/samplecode/nmas_sample/index.htm

MAF_AllowPasswordSet

Allows an LSM to determine if the user is allowed to set the password for the object that is associated
with this login session. This function is available only in NMAS 2.2 or later.

Syntax

#include <maf.h>

nint32 MAF_AllowPasswordSet
(
 MAF_Handle mh
);

Parameters

mh

(IN) Specifies the MAF handle.

Return Codes

Returns 0 if the user is allowed to set the password or a nonzero NMAS Error Codes (page 173) if the
user is not allowed to set the password.

Remarks

MAF_AllowPasswordSet provides information to the LSM if the user is allowed to set his or her
password.

See Also

MAF_GetPassword (page 61)
MAF_SetPassword (page 75)
Multiple Authentication Framework Functions 55

MAF_Begin

Directs the NMAS server to send the DO operation to the NMAS client. The NMAS Client invokes
the LCM when it receives a “DO” operation. It is called after the LSM/LCM starts execution. This
function lets NMAS know that the module is fully initialized and ready to begin communication.

Syntax

#include <maf.h>

nint32 MAF_Begin
(
 MAF_Handle mh
);

Parameters

mh

Specifies the MAF handle as supplied to the LSM/LCM by NMAS.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

All errors indicate that the login session is unusable. If errors occur, the method should free all the
resources it holds and return a non-zero value.

Remarks

This function directs the NMAS Server to send the DO operation to the NMAS client to invoke the
LCM only when the MAF_Begin is called by the LSM.

See Also

MAF_End (page 57)
56 NDK: Novell Modular Authentication Services

MAF_End

Lets NMAS know whether the method operation was a success (zero) or failure (non-zero). This
information is used by NMAS to determine the next required login steps.

Syntax

#include <maf.h>

nint32 MAF_End
(
 MAF_Handle mh,
 nint32 status,
 nint32 len,
 void *seedDatap
);

Parameters

mh

Specifies the MAF handle as supplied to the LCM/LSM.

status

0 if LCM/LSM completed successfully; non-zero if LCM/LSM failed in its login operations.

len

Reserve code is 0.

seedDatap

Reserve code is null.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

This function is the last MAF function called before the LCM/LSM returns.

The method must still execute a return after calling this function. The return value normally is 0
(SUCCESS) unless a fatal system error occurs. If an error (non-zero) value is returned, NMAS is
terminated and the login session fails.

See Also

MAF_Begin (page 56)
Multiple Authentication Framework Functions 57

MAF_Free (obsolete 3/1/2006)

 Zeroed out the memory before it is returned to the heap but is now replaced by MAF_MemFree
(page 68).

Syntax

#include <maf.h>

nint32 MAF_Free
(
 void *p,
);

Parameters

p

Points to a buffer allocated using MAF_Malloc.

See Also

MAF_Malloc (obsolete 3/1/2006) (page 67)
58 NDK: Novell Modular Authentication Services

MAF_GetAttribute

Allows an LCM/LSM to get the value of an attribute that is associated with this login session.

Syntax

#include <maf.h>

nint32 MAF_GetAttribute
(
 MAF_Handle mh,
 nint32 aid,
 unicode *tag,
 pnint32 *aLenp,
 void *aValuep
);

Parameters

mh

(IN) Specifies the MAF handle.

aid

(IN) The NMAS for the attribute (see NMAS Attribute IDs (page 47)).

tag

(IN) The tag parameter is a null-terminated Unicode string that matches the tag associated with
the data that has been written by MAF_PutAttribute, or the management functions
NMAS_PutLoginConfig and NMAS_PutLoginSecret. This parameter is required for some AIDs. It
should be null for other AIDs. For more information about the tag parameter, see NMAS
Attribute IDs (page 47).

aLenp

(IN/OUT) IN: Length of buffer; OUT: Length of the attribute value in aValuep.

aValuep

(OUT) Points to a memory area where this function places the request value. To see what values
might be returned when the aid is NMAS_AID_OPTIONS, see NMAS AID Options (page 51).

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

The length of the attribute is returned to aLenp by first calling MAF_GetAttribute with aLenp set to
zero and null for aValuep. In this case, an error NMAS_E_BUFFER_OVERFLOW (-1633) might be
returned.

Because the Simple Password is used by several different methods (Simple Password method, CIFS
methods, and AFP methods), it is designed to be user global configuration data. User global
configuration data is data that any login method LSM can retrieve by calling MAF_GetAttribute
Multiple Authentication Framework Functions 59

(page 59) using the AID of NMAS_AID_USER_GLOBAL_CONFIG_DATA. You store user global
configuration data in the login configuration data by passing in 0x00 as the fourth parameter to
NMAS_PutLoginConfig (page 115).

See Also

MAF_PutAttribute (page 72)
NMAS_PutLoginConfig (page 115)
NMAS_PutLoginSecret (page 117)
60 NDK: Novell Modular Authentication Services

MAF_GetPassword

Returns the Universal Password password and password information of the user associated with the
current login session (LSM only). This function is available only in NMAS 2.2 or later.

Syntax

#include <maf.h>

int MAF_GetPassword
(
 MAF_Handle mh,
 size_t *passwordLen,
 unicode *password,
 nuint32 *infoFlags,
 nint32 *remainingLifetime,
 nint32 *remainingGraceLogins
);

Parameters

mh

(IN) Specifies the MAF handle.

passwordLen

(IN/OUT) IN: Specifies the length in Unicode characters of the password buffer and return.
 OUT: Specifies the length in Unicode characters of the password, including the null termination.

password

(OUT) Points to the buffer to which the null-terminated Unicode password is copied. This
optional parameter can be null.

infoFlags

(OUT) Points to additional information about the current password; for example, indicating the
password has expired. This optional parameter can be null.

remainingLifetime

(OUT) If the output SPM_EXPIRED bit is not set in the infoFlags, contains the number of
seconds that remain before the password expires. If the SPM_EXPIRED bit is set in the
infoFlags, contains the number of seconds since the password expired. The value of
SPM_NO_PASSWORD_EXPIRATION (0XFFFFFFFF) indicates that there is no password
expiration time. If set to null, no password expiration is returned.

Valid Flag Defines Value Description

SPM_EXPIRED 0x1 Indicates the number of seconds since the
password expired.

SPM_GRACE_LOGIN_LIMIT 0x2 Indicates the number of additional times the user
can log in without changing the password.

SPM_SPWD_MIGRATED 0x4 Indicates that the returned password is the simple
password and that the password was set using the
simple password.
Multiple Authentication Framework Functions 61

remainingGraceLogins

(OUT) If the SPM_EXPIRED bit is set in infoFlags, indicates the number of additional times the
user can log in without changing the password. The value of
SPM_UNLIMITED_GRACE_LOGIN (0xFF) indicates there is no limit to the number of grace
logins. If set to null, no grace login information is returned.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

If no NMAS password has been set for the user and the user has enabled a simple password, the
Universal Password is set to the value of the simple password. If this is the case, the
SPM_SPWD_MIGRATED flag in the infoFlags is set. If the buffer is not large enough, an error
NMAS_E_BUFFER_OVERFLOW (-1633) might be returned. PasswordLen then contains the required
buffer size (in unicode characters).

See Also

MAF_AllowPasswordSet (page 55)
MAF_Free (obsolete 3/1/2006) (page 58)
MAF_SetPassword (page 75)
62 NDK: Novell Modular Authentication Services

MAF_GetPasswordEx

Returns the Universal Password password and password information of the user associated with the
current login session (LSM only). This function is available only in NMAS 2.3 or later.

Syntax

#include <maf.h>

int MAF_GetPasswordEx
(
 MAF_Handle mh,
 nint32 *getFlags,
 size_t *passwordLen,
 unicode *password,
 nuint32 *infoFlags,
 nint32 *remainingLifetime,
 nint32 *remainingGraceLogins
);

Parameters

mh

(IN) Specifies the MAF handle.

getFlags

(IN) Flags that effect the behavior of this function are defined in the following table:

passwordLen

(IN/OUT) IN: Specifies the length in Unicode characters of the password buffer and return.
 OUT: Specifies the length in Unicode characters of the password, including the null termination.

password

(OUT) Points to the buffer to which the null-terminated Unicode password is copied. This
optional parameter can be null.

Valid Flag Defines Value Description

SPM_SYNC_REQUEST 0x1 Does not enforce password expiration and grace
login.

SPM_INFO_REQUEST 0x2 Returns only password information (length, creation
time, expiration and grace logins).

SPM_DONT_MIGRATE_SPWD 0x4 Does not copy simple password to password.

SPM_IGNORE_NDS 0x8 Does not check if the eDirectory password is newer
than password.

SPM_IGNORE_EXPIRATION 0x10 Does not read or check password expiration and
grace login.
Multiple Authentication Framework Functions 63

infoFlags

(OUT) Points to additional information about the current password; for example, indicating the
password has expired. This optional parameter can be null.

remainingLifetime

(OUT) If the output SPM_EXPIRED bit is not set in the infoFlags, contains the number of
seconds that remain before the password expires. If the SPM_EXPIRED bit is set in the
infoFlags, contains the number of seconds since the password expired. The value of
SPM_NO_PASSWORD_EXPIRATION (0XFFFFFFFF) indicates that there is no password
expiration time. If set to null, no password expiration is returned.

remainingGraceLogins

(OUT) If the SPM_EXPIRED bit is set in infoFlags, indicates the number of additional times the
user can log in without changing the password. The value of
SPM_UNLIMITED_GRACE_LOGIN (0xFF) indicates there is no limit to the number of grace
logins. If set to null, no grace login information is returned.

Return Code

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

If the SPM_DONT_MIGRATE_SPWD flag is not set on the in-out flags and no NMAS password has
been set for the user and the user has a simple password, the Universal Password is set to the value of
the simple password. If this is the case, the SPM_SPWD_MIGRATED flag in the infoFlags is set.

See Also

MAF_AllowPasswordSet (page 55)
MAF_Free (obsolete 3/1/2006) (page 58)
MAF_GetPassword (page 61)
MAF_SetPassword (page 75)

Valid Flag Defines Value Description

SPM_EXPIRED 0x1 Indicates the number of seconds since the
password expired.

SPM_GRACE_LOGIN_LIMIT 0x2 Indicates the number of additional times the user
can log in without changing the password.

SPM_SPWD_MIGRATED 0x4 Indicates that the returned password is the simple
password and that the password was set using the
simple password.
64 NDK: Novell Modular Authentication Services

MAF_LogEvent

Allows login methods to add audit log events to the NMAS audit log. This function is only available
to proxy LCMs and LSMs. This functions is available only in NMAS 3.0 or later.

Syntax

#include <maf.h>

nuint32 MAF_LogEvent
(
 MAF_Handle mh,
 nuint32 logLevel,
 nuint32 status,
 unsigned char *statusMsg,
 nuint32 methodEventID,
 unsigned char *eventMsgFmt,
 [...]
);

Parameters

mh

(IN) Specifies the MAF handle.

logLevel

(IN) Specifies the importance of the log event. The possible values are as follows:

status

(IN) Specifies if the requested operation was success (zero value) or failed (non-zero value).

statusMsg

(IN) An message that describes the status of the requested operation.

methodEventID

(IN) An identifier that specifies the method specific audit log event identifier.

Define Value

 MAF_LOG_LEVEL_EMERGENCY 1

 MAF_LOG_LEVEL_ALERT 2

 MAF_LOG_LEVEL_CRITICAL 3

 MAF_LOG_LEVEL_ERROR 4

 MAF_LOG_LEVEL_WARNING 5

 MAF_LOG_LEVEL_NOTICE 6

 MAF_LOG_LEVEL_INFO 7

 MAF_LOG_LEVEL_DEBUG 8
Multiple Authentication Framework Functions 65

eventMsgFmt

(IN) Text that will be included in the log event. The text may optionally can contain format tags
that will be replaced by the values specified in the remaining arguments. The format tags are the
standard sprintf format tags.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.
66 NDK: Novell Modular Authentication Services

MAF_Malloc (obsolete 3/1/2006)

Allocated memory for the LSM and LCM but is now replaced by MAF_MemMalloc (page 69) and
MAF_MemRealloc (page 70).

Syntax

#include <maf.h>

nint32 MAF_Malloc
(
 size_t s,
);

Parameters

s

Size of the buffer to be allocated.

See Also

MAF_Free (obsolete 3/1/2006) (page 58)
Multiple Authentication Framework Functions 67

MAF_MemFree

Frees a buffer allocated with MAF_MemMalloc (page 69).

Syntax

C

#include <maf.h>

NMASAPI void MAF_MemFree
(
 MAF_Handle mh,
 void *p
);

Parameters

mh

(IN) The MAF_Handle passed to your method's start routine.

p

(IN) A pointer to a buffer allocated using MAF_MemMalloc (page 69) or MAF_MemRealloc
(page 70).
68 NDK: Novell Modular Authentication Services

MAF_MemMalloc

Allocates memory to be used by a login method. Memory should be released using the
MAF_MemFree (page 68) method.

Syntax

C

#include <maf.h>

NMASAPI void *MAF_MemMalloc
(
 MAF_Handle mh,
 size_t s
);

Parameters

mh

(IN) The MAF_Handle passed to your method's start routine.

s

(IN) The size of the buffer to be allocated.

Return Values

Returns a pointer to the newly allocated buffer on success, NULL on failure.

Remarks

This call should be used instead of MAF_Malloc (obsolete 3/1/2006) (page 67).
Multiple Authentication Framework Functions 69

MAF_MemRealloc

Reallocates a buffer previously allocated with MAF_MemMalloc (page 69).

Syntax

C

#include <maf.h>

NMASAPI void *MAF_MemRealloc
(
 MAF_Handle mh,
 void *p,
 size_t s
);

Parameters

mh

(IN) The MAF_Handle passed to your method's start routine

p

(IN) A pointer to a buffer allocated using MAF_MemMalloc (page 69), or NULL to allocate a
new buffer.

s

(IN) The size of the buffer to be allocated.

Return Values

Returns a pointer to the newly allocated buffer on success, NULL on failure.

Remarks

Use this call instead of MAF_Realloc.
70 NDK: Novell Modular Authentication Services

MAF_PolicyCheck

Performs a password policy check using the password policy that is effective for the user (LSM only).
This function is available only in NMAS 2.2 or later.

Syntax

#include <maf.h>

nint32 MAF_PolicyCheck
(
 MAF_Handle mh,
 size_t passwordLen,
 unicode *password
);

Parameters

mh

(IN) Specifies the MAF handle.

passwordLen

(IN) The length in Unicode characters, including null termination, of the password.

password

(IN) Points to a null-terminated Unicode string that is checked against the current password
format policies. If null, the user’s currently active password is checked against the current policy.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

If passwordLen is 0 and password is null, the user’s current password is checked against the
established login policy.

See Also

MAF_GetPassword (page 61)
Multiple Authentication Framework Functions 71

MAF_PutAttribute

Allows an LCM/LSM to put the value of an attribute that is associated with this login session.

Syntax

#include <maf.h>

 nint32 MAF_PutAttribute
(
 MAF_Handle mh,
 nint32 aid,
 unicode *tag,
 nint32 aLen,
 void *aValuep
);

Parameters

mh

Specifies the MAF handle.

aid

(IN) The NMAS for the attribute. (See Section 4.2, “NMAS Attribute IDs,” on page 47.)

tag

(IN) The tag parameter is a null-terminated UNICODE string that matches the tag associated
with the data. This parameter is required for some AIDs. For other AID parameters, the tag
should be null. For more information about the tag parameter, see Section 4.2, “NMAS Attribute
IDs,” on page 47.

aLen

Length of the attribute value in aValuep.

aValuep

Points to a memory area where this function places the value to be stored.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

If the parameters aLen and aValuep are 0 and null respectively, then both the attribute associated
with the current method and the tag are removed.

See Also

MAF_GetAttribute (page 59)
NMAS_PutLoginConfig (page 115)
NMAS_PutLoginSecret (page 117)
NMAS_GetLoginConfig (page 111)
72 NDK: Novell Modular Authentication Services

MAF_Read

The parameter rLenp returns the size of the request in bytes. rBufp is a local pointer to a buffer that
has been pre-allocated by the caller. The format of the data that is copied into rBufp is defined by the
method.

Syntax

#include <maf.h>

 nint32 MAF_Read
(
 MAF_Handle mh,
 pnint32 *rLenp,
 void *rBufp
);

Parameters

mh

Specifies the MAF handle.

rLenp

Returns the size in bytes of the data pointed to by rBufp.

rBufp

Points to a memory area where this function places the request data. This buffer must be large
enough to receive the expected data.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned the module should return a non-zero
value that causes the termination of the login session.

Remarks

The parameter rLenp returns the size of the request in bytes, while rBufp is a local pointer to a buffer
that has been pre-allocated by the method that the data is copied to. The actual format of rBufp data is
method-defined.

The method must always provide a write to each MAF_Read unless a MAF error occurs. The MAF_Read
function is invoked by the LSM to read data from the LCM and is invoked by the LCM to read data
from the LSM.

MAF_Read blocks until there is data to read or until it times out (after 3 minutes).
Multiple Authentication Framework Functions 73

See Also

MAF_WriteRead (page 80)
MAF_Write (page 79)
74 NDK: Novell Modular Authentication Services

MAF_SetPassword

Sets the password of the user associated with the current login session to the specified password
(LSM only). This function is available only in NMAS 2.2 or later.

Syntax

#include <maf.h>

int MAF_SetPassword
(
 MAF_Handle mh,
 size_t passwordLen,
 unicode *password,
 nuint32 setFlags
);

Parameters

mh

(IN) The MAF handle.

passwordLen

(IN) The length in Unicode characters of the candidate password, including the null termination.

password

(IN) Points to a null-terminated Unicode string that is the candidate password.

setFlags

(IN) Provides additional information from the agent to SPM. For example, the agent can use this
flag to specify that the user or someone else set the password.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

MAF_AllowPasswordSet (page 55)
MAF_GetPassword (page 61)

Valid Flag Defines Value Description

SPM_ADMIN_REQUEST 0x1 Indicates that the password set request was not from
the user.

SPM_IGNORE_POLICY 0x8 Indicates that the password policy is not to be enforced
when setting the password.

SPM_EXPIRE_NOW 0x10 Indicates that the password is marked as expired.
Multiple Authentication Framework Functions 75

MAF_Trace

Allows trace messages to be displayed in Directory Services Trace (DSTrace) only in LSMs and Proxy
LCMs. This function is available only in NMAS 2.2 or later.

Syntax

#include <maf.h>

nint32 MAF_Trace
(
 MAF_Handle mh,
 char *message
);

Parameters

mh

(IN) Specifies the MAF handle.

message

Points to a null-terminated character string that contains a trace message.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

MAF_TraceEnabled (page 77)
MAF_TraceOnError (page 78)
76 NDK: Novell Modular Authentication Services

MAF_TraceEnabled

Allows LSM and Proxy LCM to determine if NMAS trace is enabled. This function is available only in
NMAS 2.2 or later.

Syntax

#include <maf.h>

nint32 MAF_TraceEnabled
(
 MAF_Handle mh,
);

Parameters

mh

(IN) Specifies the MAF handle.

Return Codes

Returns non-zero if NMAS_Trace is enabled, otherwise returns 0.

See Also

MAF_Trace (page 76)
MAF_TraceOnError (page 78)
Multiple Authentication Framework Functions 77

MAF_TraceOnError

Allows trace messages to be displayed in Directory Services Trace (DSTrace) in LSMS and Proxy
LCMs. The message is displayed only if the input error is non-zero. This function is available only in
NMAS 2.2 or later

Syntax

#include <maf.h>

nint32 MAF_TraceOnError
(
 MAF_Handle mh,
 int err,
 char *message
);

Parameters

mh

(IN) Specifies the MAF handle.

err

(IN) If a non-zero message is displayed, an error is incorporated into the message.

message

(IN) Points to a null-terminated ASCII character string that contains a trace message.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

MAF_Trace (page 76)
MAF_TraceEnabled (page 77)
78 NDK: Novell Modular Authentication Services

MAF_Write

Allows the LCM/LSM to write data to the LSM/LCM. This function sends wlen bytes of data to its
counterpart.

Syntax

#include <maf.h>

 nint32 MAF_Write
(
 MAF_Handle mh,
 nint32 wlen,
 void *wBufp
);

Parameters

mh

Specifies the MAF handle.

wlen

The size in bytes of the data pointed to by wBufp.

wBufp

Pointer to the data to write.

Return Codes

***Returns 0 if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned the module should return a non-zero
value that causes the termination of the login session.

Remarks

The actual format of the wbufp data is method defined.

You must always provide a read to each MAF-Write unless an MAF Transport error occurs.

See Also

MAF_Read (page 73)
MAF_WriteRead (page 80)
Multiple Authentication Framework Functions 79

MAF_WriteRead

Writes and reads data in a single operation. This function is the same as MAF_Write (page 79)
followed by a MAF_Read (page 73).

Syntax

#include <maf.h>

 nint32 MAF_WriteRead
(
 MAF_Handle mh,
 nint32 wlen,
 void *wBufp,
 pnint32 *rLenp,
 void *rBufp
);

Parameters

mh

Specifies the MAF handle.

wLen

The size in bytes of the data pointed to by wBufp.

wBufp

Points to the data to write.

rLenp

Returns the size in bytes of the data pointed to by rBufp.

rBufp

Points to a memory area where this function places the requested data. Must be large enough to
receive expected data.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned the module should return a non-zero
value that causes the termination of the login session.

Remarks

MAF_WriteRead blocks until there is data to read or until it times out (after 3 minutes).

See Also

MAF_Read (page 73)
MAF_Write (page 79)
80 NDK: Novell Modular Authentication Services

MAF_XWriteRead (page 85)
Multiple Authentication Framework Functions 81

MAF_XRead

Allows the LCM/LSM to read encrypted data. This function receives data that was encrypted when
sent by the LCM or LSM. The parameter rLenp returns the size of the request in bytes. rBufp is a local
pointer to a buffer that has been pre-allocated by the caller. The format of the data that is copied into
rBufp is defined by the method.

Syntax

#include <maf.h>

 nint32 MAF_XRead
(
 MAF_Handle mh,
 pnint32 *rLenp,
 void *rBufp
);

Parameters

mh

Specifies the MAF handle.

rLenp

Returns the size in bytes of the clear-text data pointed to by rBufp.

rBufp

Points to a memory area where this function places the requested data. Must be large enough to
receive the expected data.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned, the module should return a non-zero
value that causes the termination of the login session.

Remarks

The parameter rLenp returns the size of the request in bytes, while rBufp is a local pointer to a buffer
that has been pre-allocated by the method. Clear-text data is copied to this buffer. The actual format
of rBufp data is method-defined.

The method must always provide an encrypted write to each MAF_XRead unless a MAF error occurs.

See Also

MAF_WriteRead (page 80)
MAF_Write (page 79)
MAF_XWriteRead (page 85)
82 NDK: Novell Modular Authentication Services

MAF_XWrite (page 84)
Multiple Authentication Framework Functions 83

MAF_XWrite

Allows the LCM/LSM to write encrypted data to the LSM/LCM. The function sends wlen bytes of
data to its counterpart that is encrypted for transit. The actual format of the wBufp data is method-
defined.

Syntax

#include <maf.h>

 nint32 MAF_XWrite
(
 MAF_Handle mh,
 nint32 wlen,
 void *wBufp
);

Parameters

mh

Specifies the MAF handle.

wlen

The size in bytes of the clear-text data pointed to by wBufp.

wBufp

Points to the clear-text data to write.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned, the module should return a non-zero
value that causes the termination of the login session.

Remarks

You must always provide an encrypted read to each MAF_XWrite unless a MAF Transport occurs.

See Also

MAF_Read (page 73)
MAF_WriteRead (page 80)
MAF_XRead (page 82)
MAF_XWriteRead (page 85)
84 NDK: Novell Modular Authentication Services

MAF_XWriteRead

Writes and reads data in a single operation with both encrypted and decrypted data as appropriate.
This function is the same as MAF_Write (page 79) followed by a MAF_XRead (page 82) .

Syntax

#include <maf.h>

 nint32 MAF_XWriteRead
(
 MAF_Handle mh,
 nint32 wlen,
 void *wBufp,
 pnint32 *rLenp,
 void *rBufp
);

Parameters

mh

Specifies the MAF handle.

wLen

The size in bytes of the data pointed to by wBufp.

wBufp

Points to the clear-text data to write.

rLenp

Returns the size in bytes of the clear-text data pointed to by rBufp.

rBufp

Points to a memory area where this function places the requested data. Must be large enough to
receive expected data.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Returns NMAS_E_NOT_SUPPORTED if called while in disconnected mode.

All errors indicate that it is not possible for the LSM and LCM to communicate. If an error other than
NMAS_E_NOT_SUPPORTED (as described above) is returned, the module should return a non-zero
value that causes the termination of the login session.

Remarks

MAF_XWriteRead blocks until there is data to read or until it times out.

See Also

MAF_Read (page 73)
MAF_Write (page 79)
Multiple Authentication Framework Functions 85

MAF_XRead (page 82)
MAF_XWrite (page 84)
MAF_WriteRead (page 80)
86 NDK: Novell Modular Authentication Services

MAFDS_ATTRIBUTE

Contains information about a data store attribute.

Syntax

C

#include <mafds.h>

typedef struct MAFDS_ATTRIBUTE
{
 unicode *attr;
 int syntax;
};

Fields

attr

The name of the attribute.

syntax

The syntax attribute. (See “MAFDS Syntax Constants” on page 53 for a listing of possible
values.)
Multiple Authentication Framework Functions 87

MAFDS_CreateContext

Creates a new MAFDS context handle that can be used with other MAFDS routines.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_CreateContext
(
 MAF_Handle mh,
 MAFDS_CONTEXT *outContext
);

Parameters

mh

(IN) The MAF_Handle passed to your method's start routine.

outContext

(OUT) A pointer to a MAFDS_CONTEXT that will receive the new context handle.

Return Values

Zero on success, non-zero on failure.

Remarks

The context handle returned from this call will have rights to read and write objects stored in local
replicas. The context handle will also have read-only access to the Security Container in the tree.

See Also

MAFDS_FreeContext (page 90)
88 NDK: Novell Modular Authentication Services

MAFDS_FreeContainerEntries

Free a list of container entries returned from MAFDS_ListContainerEntries (page 99).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_FreeContainerEntries
(
 MAFDS_CONTEXT context
 unicode **entries
);

Parameters

context

(IN) The context that was used to read the values.

entries

(IN) A array of unicode strings returned from MAFDS_ListContainerEntries (page 99).

See Also

MAFDS_ListContainerEntries (page 99)
Multiple Authentication Framework Functions 89

MAFDS_FreeContext

Frees a MAFDS context.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_FreeContext
(
 MAFDS_CONTEXT context
);

Parameters

context

(IN) The context to be freed.

See Also

MAFDS_CreateContext (page 88)
90 NDK: Novell Modular Authentication Services

MAFDS_FreeModValues

Frees a MAFDS_MODVALUE handle that was allocated using MAFDS_InsertModValue (page 97).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_FreeModValues
(
 MAFDS_CONTEXT context,
 MAFDS_MODVALUE *modValues
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext (page 88).

modValues

(IN) A MAFDS_MODVALUE handle.

See Also

MAFDS_CreateContext (page 88)
MAFDS_InsertModValue (page 97)
Multiple Authentication Framework Functions 91

MAFDS_FreeValues

Frees a MAFDS_VALUE handle that was allocated with either MAFDS_ReadAttributeValues
(page 102) or MAFDS_ReadInheritedAttributeValues (page 104).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_FreeValues
(
 MAFDS_CONTEXT context
 MAFDS_VALUE values
);

Parameters

context

(IN) The context that was used to read the values.

values

(IN) The MAFDS_VALUE handle to free.

See Also

MAFDS_ReadAttributeValues (page 102)
MAFDS_ReadInheritedAttributeValues (page 104)
92 NDK: Novell Modular Authentication Services

MAFDS_FreeValueData

Free the contents of a value data structure returned from MAFDS_GetValueData (page 96).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_FreeValueData
(
 MAFDS_CONTEXT context,
 MAFDS_VALUE_DATA *valueData
);

Parameters

context

(IN) The context that was used to read the values.

valueData

(IN) A pointer to a MAFDS_VALUE_DATA structure whose contents are to be freed.

Remarks

Use this call to free the contents of a MAFDS_VALUE_DATA structure that were retrieved using
MAFDS_GetValueData (page 96).

See Also

MAFDS_GetValueData (page 96)
Multiple Authentication Framework Functions 93

MAFDS_GetParentContainer

Returns the parent container DN of the specified object.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_GetParentContainer
(
 MAFDS_CONTEXT context,
 unicode *objectDN,
 unicode *parentDN,
 nuint32 parentDNSize
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext (page 88).

objectDN

(IN) The object whose parent is to be retrieved. The DN should be provided in typeless, dot-
delimited format (for example, Tom.Accounting.AcmeCorp).

parentDN

(OUT) A buffer to receive the DN of the parent container.

parentDNSize

(IN) The size of the buffer supplied in the “parentDN” parameter.

Return Codes

Table 4-3 MAFDS_GetParentContainer Return Codes

See Also

MAFDS_CreateContext (page 88)

Value Description

NMAS_E_ENTRY_NOT_FOUND The object specified in “objectDN” does not exist.

NMAS_E_BUFFER_OVERFLOW The buffer pointed to by “parentDN” is too small.
94 NDK: Novell Modular Authentication Services

MAFDS_GetPartitionRootContainer

Returns the partition root container DN of the specified object.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_GetPartitionRootContainer
(
 MAFDS_CONTEXT context,
 unicode *objectDN,
 unicode *partRootDN,
 nuint32 partRootDNSize
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext (page 88).

objectDN

(IN) The object whose partition root container is to be retrieved.

partRootDN

(OUT) A buffer to receive the DN of the partition root container. The DN should be provided in
typeless, dot-delimited format (for example, Tom.Accounting.AcmeCorp).

partRootDNSize

(IN) The size of the buffer supplied in the “parentDN” parameter.

Return Codes

Table 4-4 MAFDS_GetParentContainer Return Codes

See Also

MAFDS_CreateContext (page 88)

Value Description

NMAS_E_ENTRY_NOT_FOUND The object specified in “objectDN” does not exist.

NMAS_E_BUFFER_OVERFLOW The buffer pointed to by “partRootDN” is too small.
Multiple Authentication Framework Functions 95

MAFDS_GetValueData

Retrieves individual values from a MAFDS_VALUE handle. Values must first be read from the data
store using either MAFDS_ReadAttributeValues (page 102) or
MAFDS_ReadInheritedAttributeValues (page 104).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_GetValueData
(
 MAFDS_CONTEXT context,
 MAFDS_CONTEXT values,
 MAFDS_VALUE_DATA *valueData
);

Parameters

context

(IN) The context that was used to read the values.

values

(IN) The MAFDS_VALUE handle which contains the values to be retrieved.

valueData

(OUT) A pointer to a MAFDS_VALUE_DATA structure to receive the next value.

Return Codes

NMAS_E_NO_MORE_ENTRY_ATTRIBUTES: There are no more values to be retrieved from the
value handle specified in “values”.

Remarks

One value will be returned on each call to MAFDS_GetValueData (page 96). To retrieve all the values
from the MAFDS_VALUE handle, a login method should call MAFDS_GetValueData in a loop until
it returns NMAS_E_NO_MORE_ENTRY_ATTRIBUTES.

The caller must free the contents of the MAFDS_VALUE_DATA structure using
MAFDS_FreeValueData (page 93) after each successful call.

See Also

MAFDS_FreeValueData (page 93)
MAFDS_ReadAttributeValues (page 102)
MAFDS_ReadInheritedAttributeValues (page 104)
96 NDK: Novell Modular Authentication Services

MAFDS_InsertModValue

Inserts a data store modification request into a MAFDS_MODVALUE handle. Use
MAFDS_ModifyEntry (page 100) to execute the modification request.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_InsertModValue
(
 MAFDS_CONTEXT context,
 int *operation,
 MAFDS_ATTRIBUTE *attr,
 void *value,
 size_t valueSize,
 MAFDS_MODVALUE *modValues
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext (page 88).

operation

(IN) The type of modification to be performed. This may be one of the following values:

Table 4-5 MAFDS_InsertModValue Operational Parameters

attr

(IN) The attribute to be modified.

value

(IN) If a new attribute value is being added, this parameter must contain the new value. This
parameter may be NULL if MAFDS_MODOP_DEL_ATTR in the “operation” parameter.

valueSize

(IN) The size in bytes of the buffer pointed to by “value”.

 Value Description

 MAFDS_MODOP_ADD_VALUE Adds a value to an attribute. If the attribute does not exist, it will
be created. If the attribute exists and it is a single-values
attribute, this call will fail with an NMAS_E_ENTRY_EXISTS
error.

 MAFDS_MODOP_MODIFY_VALUE Change a value for a single-values attribute, or add a new value
to a multi-values attribute.

 MAFDS_MODOP_DEL_VALUE Remove a value from an attribute.

 MAFDS_MODOP_DEL_ATTR Remove an attribute and all of its values.
Multiple Authentication Framework Functions 97

modValues

(IN/OUT) The address of a handle that contains the modification request. If this is the first
modification request for this handle, the handle must be pre-initialized to NULLL.

Remarks

The first call to MAFDS_InsertModValue allocates a MAFDS_MODVALUE handle to store the
modification request. Subsequent calls may be made with the same MAFDS_MODVALUE handle to
store additional modification requests in the handle.

The MAFDS_MODVALUE handle must be pre-initialized to NULL prior to adding the first
modification request.

Modification requests may be executed using the MAFDS_ModifyEntry (page 100) call. After calling
MAFDS_ModifyEntry, the login method must call MAFDS_FreeModValues (page 91) to free the
MAFDS_MODVALUE handle.

See Also

MAFDS_FreeModValues (page 91)
MAFDS_ModifyEntry (page 100)
98 NDK: Novell Modular Authentication Services

MAFDS_ListContainerEntries

Lists all of the objects in a container. The list may be filtered by object class.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_ListContainerEntries
(
 MAFDS_CONTEXT context,
 char *dn,
 char *objectClass,
 char ***entries
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext.

dn

(IN) The DN of the container whose contents are to be listed. The DN should be provided in
typeless, dot-delimited format (for example, ou=Accounting,o=AcmeCorp)

objectClass

(IN) The class of the objects to be listed. If this parameter is NULL then all objects will be listed.

entries

(OUT) The address of a NULL-terminated array of strings containing the DN of all objects that
were found in the search.

Return Codes

NMAS_E_ENTRY_NOT_FOUND: The container specified in “dn” does not exist.

Remarks

On successful completion, the “entries” parameter will contain the requested object list. The caller
must free this list using MAFDS_FreeContainerEntries (page 89).
Multiple Authentication Framework Functions 99

MAFDS_ModifyEntry

Execute all of the modification requests stored in a MAFDS_MODVALUE handle. Modification
requests may be added to a MAFDS_MODVALUE handle using MAFDS_InsertModValue (page 97).

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_ModifyEntry
(
 MAFDS_CONTEXT context,
 char *dn
 MAFDS_MODVALUE *modValues
);

Parameters

context

(IN) A MAFDS context allocated using MAFDS_CreateContext (page 88).

dn

(IN) The DN of the object to be modified. The DN should be provided in typeless, dot-delimited
format (for example, Tom.Accounting.AcmeCorp).

modValues

(IN) A MAFDS_MODVALUE handle that contains one or more modification request to be
executed.

Return Codes

Table 4-6 MAFDS_ModifyEntry Return Codes

Remarks

This call executes the modification requests stored in a MAFDS_MODVALUE handle. Requests may
be added to a MAFDS_MODVALUE handle using the MAFDS_InsertModValue (page 97) call. The
login method is responsible for freeing the MAFDS_MODVALUE handle using
MAFDS_FreeModValues (page 91).

If this call fails because one of the requested modifications could not be completed, then none of the
requested modifications will be performed.

Value Description

 NMAS_E_ENTRY_NOT_FOUND The container specified in “dn” does not exist

 NMAS_E_ENTRY_EXISTS A request was made to add an additional value to an existing single-
valued attribute, or to add a duplicate value to a multi-valued attribute.
100 NDK: Novell Modular Authentication Services

See Also

MAFDS_CreateContext (page 88)
MAFDS_FreeModValues (page 91)
MAFDS_InsertModValue (page 97)
Multiple Authentication Framework Functions 101

MAFDS_ReadAttributeValues

Retrieves the values of the specified attributes on an object. Call MAFDS_GetValueData (page 96) to
retrieve data read by this call.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_ReadAttributeValues
(
 MAFDS_CONTEXT context,
 unicode *dn,
 MAFDS_ATTRIBUTE *attrs,
 nuint32 numAttrs,
 MAFDS_VALUE *values,
 nuint32 *numValuesRead
);

Parameters

context

(IN) The context to use for the read operation.

dn

(IN) The DN of the object whose attributes are to be read. The DN should be provided in
typeless, dot-delimited format (for example, Tom.Accounting.AcmeCorp).

attrs

(IN) An array of MAFDS_ATTRIBUTE structures which specify the attributes to be read.

numAttrs

(IN) The number of elements in attrs.

values

(OUT) A handle containing the requested values. Call MAFDS_GetValueData (page 96) to
retrieve the values from this handle.

numValuesRead

(OUT) The number of values retrieved from the data store. This parameter may be NULL.

Return Codes

Table 4-7 MAFDS_ReadAttributeValues Return Codes

Value Description

NMAS_E_ENTRY_ATTRIBUTE_NOT_FOUND One or more of the specified attributes does not exist
on the specified object.

NMAS_E_ENTRY_NOT_FOUND The specified object does not exist.
102 NDK: Novell Modular Authentication Services

See Also

MAFDS_GetValueData (page 96)
Multiple Authentication Framework Functions 103

MAFDS_ReadInheritedAttributeValues

Reads the specified attribute. Call MAFDS_GetValueData (page 96) to retrieve data read by this call.

This call attempts to read an attribute first from the user object, then the parent container, then the
partition root container. The call will return as soon as the attribute is found. For example, if the
attribute is found on the user object, then this call will not attempt to read the parent container or the
partition root.

Syntax

C

#include <mafds.h>

NMASAPI int MAFDS_ReadInheritedAttributeValues
(
 MAFDS_CONTEXT context,
 unicode *objectDN,
 MAFDS_ATTRIBUTE *attr,
 MAFDS_VALUE *values,
 nuint32 *numValuesRead,
 unicode *objectRead,
 nuint32 objectReadSize
);

Parameters

context

(IN) The context to use for the read operation.

objectDN

(IN) The DN of the object whose attributes are to be read. The DN should be provided in
typeless, dot-delimited format (for example, Tom.Accounting.AcmeCorp).

attr

(IN) The attribute to be read.

values

(OUT) A handle containing the requested values. Call MAFDS_GetValueData (page 96) to
retrieve the values from this handle.

numValuesRead

(OUT) A pointer to an integer that will contain the number of values read from the data store on
a successful return. This parameter may be NULL.

objectRead

(OUT) A pointer to a buffer that will receive the DN of the object from which the values were
read.

objectReadSize

(IN) The size in bytes of the buffer pointed to by the objectRead parameter.
104 NDK: Novell Modular Authentication Services

Return Codes

Table 4-8 MAFDS_ReadInheritedAttributeValues Return Codes

See Also

MAFDS_GetValueData (page 96)

Value Description

NMAS_E_BUFFER_OVERFLOW The buffer supplied in the objectRead parameter was too
small.

NMAS_E_ENTRY_ATTRIBUTE_NOT_FOUND The specified attribute does not exist on the specified
object, its parent container, or on the partition root
container.

NMAS_E_ENTRY_NOT_FOUND The specified object does not exist.
Multiple Authentication Framework Functions 105

MAFDS_VALUE_DATA

Contains an individual attribute value.

Structure

C

typedef struct MAFDS_VALUE_DATA
{

 void *data;
 size_t size;
 unicode *attr;
 int syntax;
};

Fields

data

The attribute value. The format of this field depends on the attribute syntax.

size

The size of the buffer pointed to by the “data” field.

attr

The attribute from which this value was read.

syntax

The syntax of the attribute. (See “MAFDS Syntax Constants” on page 53 for a listing of possible
values.)
106 NDK: Novell Modular Authentication Services

5 5Method Management Functions

The NMAS Method Management functions are used to manage the configuration and secret data for
a login method. These functions are typically used by the by a login method management tool. An
iManager plugin is one example that reads data from a smart card and assigns that card to a user so
they can authenticate using a smart card login method. This section contains the following topics:

 Section 5.1, “Configuration Store Functions,” on page 107

 Section 5.2, “SecretStore Management Functions,” on page 107

 Section 5.3, “Login Method Management Functions,” on page 108

5.1 Configuration Store Functions
Configuration data is stored in the Authentication Store in eDirectoryTM. It can contain any user-
defined data and can be accessed and viewed using the Method Management functions. Data in the
Configuration Store, unlike Novell SecretStore™ data, can be retrieved and viewed through the
MMG interface program.

Configuration data is secured in eDirectory with a NICI encryption. The configuration data storage
area is defined as a multiple value attribute that can be associated with any user object, Login Method
object, or Login Device object within eDirectory. Data can also be read from the Authentication Store
using the MAF_GetAttribute (page 59) function or modified using MAF_PutAttribute (page 72).

The login configuration functions are defined below:

 nmasldap_delete_login_config (page 119)

 nmasldap_get_login_config (page 123)

 nmasldap_put_login_config (page 125)

5.2 SecretStore Management Functions
The MMG functions provide the ability to write but not read Secret data. Secret data can only be read
by the LSM through the MAF_GetAttribute (page 59) function. Secret data is secured with an
authentication strength encryption. The secret data storage area is defined as a multiple value
attribute that can be associated with any user object, Login Method object, or Login Device object
within eDirectory.

The SecretStore management functions are defined below:

 nmasldap_delete_login_secret (page 121)

 nmasldap_put_login_secret (page 127)
Method Management Functions 107

5.3 Login Method Management Functions
The NMAS APIs include a set of new LDAP functions for both C and Java. The Java library supports
both JNDI and JLDAP. The functions/methods are grouped below by operation. All of the java
methods are contained in the com.novell.security.nmas.mgmt.NMASLoginDataMgr class, in the
NMASToolkit.jar.

For more information about Java password management functions, see Section 7.1, “NMAS
Password Management Java Classes,” on page 135.

We also provided the original Windows-Only Legacy Functions, which are written in C and Java. We
recommend that all future development be based on the new LDAP functionality. The following lists
all of the login method management functions included in this API:

 See the LDAP Java Methods (../api/index.html)

 deleteLoginConfig (../api/com/novell/security/nmas/mgmt/
NMASLoginDataMgr.html#deleteLoginConfig)

 deleteLoginSecret (../api/com/novell/security/nmas/mgmt/
NMASLoginDataMgr.html#deleteLoginSecret)

 getLoginConfig (../api/com/novell/security/nmas/mgmt/
NMASLoginDataMgr.html#getLoginConfig)

 putLoginConfig (../api/com/novell/security/nmas/mgmt/
NMASLoginDataMgr.html#putLoginConfig)

 putLoginSecret (../api/com/novell/security/nmas/mgmt/
NMASLoginDataMgr.html#putLoginSecret)

 Windows-Only Legacy Functions

 NMAS_DeleteLoginConfig (page 109)

 NMAS_DeleteLoginSecret (page 110)

 NMAS_GetLoginConfig (page 111)

 NMAS_PutLoginConfig (page 115)

 NMAS_PutLoginSecret (page 117)

IMPORTANT: The NMAS Login Data Management API requires NMAS 2.1 or later. LDAP
extensions are used to communicate with eDirectory. An authenticated SSL connection is
required for all APIs.
108 NDK: Novell Modular Authentication Services

../api/index.html
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html#deleteLoginConfig
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html#deleteLoginSecret
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html#getLoginConfig
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html#putLoginConfig
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html#putLoginSecret

NMAS_DeleteLoginConfig

Deletes the data associated with the specified tag and method on the named object. This function is
available to the Novell Client and server. These interfaces are only available to Windows
applications.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

nint NMAS_DeleteLoginConfig
(
 unicode *treeName
 unicode *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 unicode *tag
);

Parameters

treeName

(IN) The NDS® eDirectory tree name.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.
C. Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) Unique method identifier. A 32-bit unsigned integer.

tag

(IN) Tag associated with the data. C: Unicode string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_GetLoginConfig (page 111)
Method Management Functions 109

NMAS_DeleteLoginSecret

Deletes the login secret data associated with the specified tag and method on the named object. This
function is available to the Novell Client and server. These interfaces are only available on Windows
platforms.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

nint NMAS_DeleteLoginSecret
(
 unicode *treeName
 unicode *objectDN,
 nuint32 methodIdLen,
 pnuint32 methodID,
 unicode *tag
);

Parameters

treeName

(IN) The eDirectory tree name.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.
C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. Valid values are 4 or 16.

methodID

(IN) Unique method identifier. A 32-bit unsigned integer.

tag

(IN) Tag associated with the data.

C: Unicode string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_PutLoginSecret (page 117)
110 NDK: Novell Modular Authentication Services

NMAS_GetLoginConfig

Returns the data specified by the method tag from the Login Configuration store for the specified
object. The data is decrypted before it is returned. The maximum size of the login configuration and
login secret data is 60,000 bytes. This function is available to the Novell Client and server. These
interfaces are only available on Windows platforms.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

nint NMAS_GetLoginConfig
(
 unicode *treeName
 unicode *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 unicode *tag,
 size_t bufferLen,
 size_t *dataLen,
 void *data
);

Parameters

treeName

(IN) Identifies the eDirectory tree name.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) Unique method identifier. A 32-bit unsigned integer.

tag

(IN) Tag associated with the data.

C: Unicode string

bufferLen

(IN) Size in bytes of the buffer.

dataLen

(OUT) Size in bytes of the data returned.C: pnint32

data

(OUT) Requested data.
Method Management Functions 111

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_PutLoginConfig (page 115)
MAF_GetAttribute (page 59)
MAF_PutAttribute (page 72)
112 NDK: Novell Modular Authentication Services

NMAS_Login

Performs an NMAS login sequence.

Syntax

C

#include <nmas.h>
#include <nmasclnt.h>
#include <nmasext.h>

N_EXTERN_LIBRARY (int) NMAS_Login
(
 nstr8 *pTreeName,
 nstr8 *pUserDN,
 nstr8 *pPwd,
 nstr8 *pServer,
 nstr8 *pSequence,
 nstr8 *pClearance,
 nptr uiHandle,
 nuint32 uiTimeout,
 nuint32 options
);

Parameters

TreeName

(IN) The eDirectory tree in which to login.

pUserDN

(IN) Specifies the dot delimited distinguished name of the user to login.

pPwd

(IN) The password for login method, which can be NULL for methods that don't use a
password.

pServer

(IN) The name of the server in the eDirectory tree to use for login. If specified, the API will
attempt to use the specific server for login. However, if the specified server can't complete the
login, a different server may be selected. This can be used to target a specific server for login.

pSequence

(IN) Specifies the NMAS login sequence to run. If NULL is specified, the user’s default sequence
is used.

pClearance

(IN) Specifies the NMAS login clearance. Specify NULL if the clearance is not used.

uiHandle

(Optional) (IN) On Windows platforms, this is the parent window handle that can be use by
methods that display a user interface. This allows the method to create windows with a proper
parent/child window relationship. Specify NULL if your method does not use this parameter.
Method Management Functions 113

uiTimeout

(IN) Specifies the user interface inactivity timeout (in seconds) passed to methods. A value of 0
indicates no timeout. If a method displays a user interface, it can use this value to timeout its
windows due to inactivity.

options

(IN) Specifies one of NMAS_OPT_xxx values defined in nmasclnt.h.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_GetLoginConfig (page 111)
MAF_GetAttribute (page 59)
MAF_PutAttribute (page 72)
114 NDK: Novell Modular Authentication Services

NMAS_PutLoginConfig

Stores the tag and the data in the Login Configuration store for the specified method and specified
object. The data is encrypted using the data strength encryption key associated with the Login
Configuration store. The maximum size of the login configuration and login secret data is 60,000
bytes. This function is available to the Novell Client and server. These interfaces are only available on
Windows platforms.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

nint NMAS_PutLoginConfig
(
 unicode *treeName
 unicode *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 unicode *tag,
 size_t dataLen,
 void *data
);

Parameters

treeName

(IN) The eDirectory tree name.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless distinguished name.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) Unique method identifier. A 32-bit unsigned integer.

NOTE: This is the method identification number of the method that is allowed to access the
data. A method identification number of zero means that the data can be accessed by any
method by using the NMAS_AID_USER_GLOBAL_CONFIG_DATA AID (see Section 4.2,
“NMAS Attribute IDs,” on page 47).

tag

(IN) Tag associated with the data. C: Unicode string

dataLen

(IN) Size in bytes of the data.
Method Management Functions 115

data

(IN) Data to be encrypted and stored in the object.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_GetLoginConfig (page 111)
MAF_GetAttribute (page 59)
MAF_PutAttribute (page 72)
116 NDK: Novell Modular Authentication Services

NMAS_PutLoginSecret

Stores the tag and the data in the Login Secret store for the specified method and object. The data is
encrypted using the authentication strength encryption key associated with the Login Secret store.
This function is available to the Novell Client and server. These interfaces are only available on
Windows platforms.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 nint NMAS_PutLoginSecret
(
 unicode *treeName
 unicode *objectDN,
 nuint32 methodIdLen,
 pnuint32 methodID,
 unicode *tag,
 size_t dataLen,
 void *data
);

Parameters

treeName

(IN) The eDirectory tree name.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) Unique method identifier. A 32-bit unsigned integer.

tag

(IN) Tag associated with the data.

C: Unicode string

dataLen

(IN) Size in bytes of the data.

data

(IN) Data to be encrypted and stored in the object.
Method Management Functions 117

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

Server APIs. There is no NMAS_GetLoginSecret function because the secret data can only be read by
an LSM.

See Also

MAF_GetAttribute (page 59)
118 NDK: Novell Modular Authentication Services

nmasldap_delete_login_config

Deletes the data associated with the specified tag and method on the named object. This function is
typically used by management applications and is provided in the NMAS “ldapext” shared library.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 int nmasldap_delete_login_config
(
 LDAP *ld,
 char *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 char *tag
);

Parameters

ld

(IN) An authenticated LDAP connection.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) The unique method identifier assigned to a login method. The method identifier specifies to
which NMAS login method the login secret or configuration data is associated. The zero method
identifier zero (0) indicates that the login secret data can be accessed by any login method.
Examples of assigned method identifiers include the following:

 0x00000000: Global login method data available to all login methods

 0x00000007: NDS Password Login Method.

 0x00000009: Simple Password Login Method

 0x0000000B: EXTERNAL SASL Mechanism

 0x0000001C: DIGEST-MD5 SASL Mechanism

 0x0000001F: Challenge/Response Login Method

 0x00000025: Novell Enhanced Smartcard Login Method

tag

(IN) Tag associated with the data.

C: Unicode string
Method Management Functions 119

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

 An NMAS LDAP Extension version number

 A BER Value that contains the input unicode target object eDirectory DN

 A BER Value that contains the input method identifier

 A BER Value that contains the input unicode tag

 The input data as a bitstring

See Also

nmasldap_get_login_config (page 123)
nmasldap_put_login_config (page 125)
120 NDK: Novell Modular Authentication Services

nmasldap_delete_login_secret

Deletes the login secret data associated with the specified tag and method on the named object and is
typically used by management.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 int nmasldap_delete_login_secret
(
 LDAP *ld,
 Unicode *objectDN,
 size_t methodIDLen,
 pnuint32 methodID,
 unicode *tag
);

Parameters

ld

(IN) An authenticated LDAP conection.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.
C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. Valid values are 4 or 16.

methodID

(IN) The unique method identifier assigned to a login method. The method identifier specifies to
which NMAS login method the login secret data is associated. The zero method identifier zero
(0) indicates that the login secret data can be accessed by any login method. Examples of
assigned method identifiers include the following:

 0x00000000: Global login method data available to all login methods

 0x00000007: NDS Password Login Method

 0x00000009: Simple Password Login Method

 0x0000000B: EXTERNAL SASL Mechanism

 0x0000001C: DIGEST-MD5 SASL Mechanism

 0x0000001F: Challenge/Response Login Method

 0x00000025: Novell Enhanced Smartcard Login Method

tag

(IN) Tag associated with the data.

C: Unicode string
Method Management Functions 121

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_delete_login_secret (page 121)
122 NDK: Novell Modular Authentication Services

nmasldap_get_login_config

Returns the data specified by the method tag from the Login Configuration store for the specified
object. The data is decrypted before it is returned. The maximum size of the login configuration and
login secret data is 60,000 bytes. This function is typically used by management applications and is
provided in the NMAS “ldapext” shared library.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int nmasldap_get_login_config
(
 LDAP *ld,
 char *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 char *tag,
 size_t *dataLen,
 void *data
);

Parameters

ld

(IN) An authenticated LDAP conection.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) The unique method identifier assigned to a login method. The method identifier specifies to
which NMAS login method the login secret or configuration data is associated. The zero method
identifier zero (0) indicates that the login secret data can be accessed by any login method.
Examples of assigned method identifiers include the following:

 0x00000000: Global login method data available to all login methods

 0x00000007: NDS Password Login Method.

 0x00000009: Simple Password Login Method

 0x0000000B: EXTERNAL SASL Mechanism

 0x0000001C: DIGEST-MD5 SASL Mechanism

 0x0000001F: Challenge/Response Login Method

 0x00000025: Novell Enhanced Smartcard Login Method
Method Management Functions 123

tag

(IN) Tag associated with the data.

C: Unicode string

dataLen

(OUT) Size in bytes of the data returned.C: pnint32

data

(OUT) Requested data.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_delete_login_config (page 119)
nmasldap_put_login_config (page 125)
124 NDK: Novell Modular Authentication Services

nmasldap_put_login_config

Stores the tag and the data in the Login Configuration store for the specified method and specified
object. The data is encrypted using the data strength encryption key associated with the Login
Configuration store. The maximum size of the login configuration and login secret data is 60,000
bytes. This function is typically used by management applications and is provided in the NMAS
“ldapext” shared library.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 int nmasldap_put_login_config
(
 LDAP *ld,
 char *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 char *tag,
 size_t dataLen,
 void *data
);

Parameters

ld

(IN) An authenticated LDAP conection.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) The unique method identifier assigned to a login method. The method identifier specifies to
which NMAS login method the login secret or configuration data is associated. The zero method
identifier zero (0) indicates that the login secret data can be accessed by any login method.
Examples of assigned method identifiers include the following:

 0x00000000: Global login method data available to all login methods

 0x00000007: NDS Password Login Method.

 0x00000009: Simple Password Login Method

 0x0000000B: EXTERNAL SASL Mechanism

 0x0000001C: DIGEST-MD5 SASL Mechanism

 0x0000001F: Challenge/Response Login Method

 0x00000025: Novell Enhanced Smartcard Login Method
Method Management Functions 125

tag

(IN) Tag associated with the data.

C: Unicode string

dataLen

(IN) Size in bytes of the data.

data

(IN) Data to be encrypted and stored in the object.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_delete_login_config (page 119)
nmasldap_get_login_config (page 123)
126 NDK: Novell Modular Authentication Services

nmasldap_put_login_secret

Stores the tag and the data in the Login Secret store for the specified method and object. The data is
encrypted using the authentication strength encryption key associated with the Login Secret store.
This function is typically used by management applications and is provided in the NMAS “ldapext”
shared library.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 int nmasldap_put_login_secret
(
 LDAP *ld,
 char *objectDN,
 nuint32 methodIDLen,
 pnuint32 methodID,
 char *tag,
 size_t dataLen,
 void *data
);

Parameters

ld

(IN) An authenticated LDAP conection.

objectDN

(IN) Identifies the object that holds the login data. dot-delimited typeless DN.

C: Unicode string

methodIDLen

(IN) The number of bytes in the methodID. The only valid value is 4.

methodID

(IN) The unique method identifier assigned to a login method. The method identifier specifies to
which NMAS login method the login secret data is associated. The zero method identifier zero
(0) indicates that the login secret data can be accessed by any login method. Examples of
assigned method identifiers include the following:

 0x00000000: Global login method data available to all login methods

 0x00000007: NDS Password Login Method

 0x00000009: Simple Password Login Method

 0x0000000B: EXTERNAL SASL Mechanism

 0x0000001C: DIGEST-MD5 SASL Mechanism

 0x0000001F: Challenge/Response Login Method

 0x00000025: Novell Enhanced Smartcard Login Method
Method Management Functions 127

tag

(IN) Tag associated with the data.

C: Unicode string

dataLen

(IN) Size in bytes of the data.

data

(IN) Data to be encrypted and stored in the object.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_delete_login_secret (page 121)
128 NDK: Novell Modular Authentication Services

6 6NMAS Login Policy Management

This section describes the NMAS login policy management functions and the extensions in the
following topics:

 Section 6.1, “NMAS Login Policy Management,” on page 129

6.1 NMAS Login Policy Management

NMAS Login Policy Management C Functions

 “nmasldap_policy_refresh” on page 130

 “nmasldap_check_login_policy” on page 131

 “nmasldap_set_address_policy” on page 133
NMAS Login Policy Management 129

nmasldap_policy_refresh

Requests that NMAS re-reads the login policy, and re-loads all login methods.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int int nmasldap_policy_refresh
(
 LDAP #ld,
);

Parameters

ld

(IN) The LDAP session handle.

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also
130 NDK: Novell Modular Authentication Services

nmasldap_check_login_policy

Queries NMAS to determine if the user’s login policy will allow the user to log in. Also, depending
upon the specified flags, this request will update the user login attributes, such as login intruder
attributes, login failure time, login time, last login time, and remaining grace logins.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int nmasldap_check_login_policy
(
 LDAP *ld,
 char *objectDN,
 unsigned int flags,
 size_t netAddressSize,
 unsigned char *netAddress
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the target object. An LDAP DN.

C: utf-8 string

flags

(IN) A combination of the following flags can be used to specify the login policy checks
performed and login attributes that will be updated.

LOGIN_POLICY_CHECK (0x1) Only checks if the specified user is allowed to log in.

LOGIN_POLICY_SUCCESS_UPDATE (0x2) Updates the user’s login attributes as if login were
successful

LOGIN_POLICY_FAILURE_UPDATE (0X4) Updates the user’s login attributes as if login failed.

LOGIN_POLICY_PWD_POLICY_CHECK (0x8) Checks if the user is allowed to login using the
password.

netAddressSize

(IN) Specifies the size of the network address provided in the netAddress parameter.

netAddress

(IN) Designates the network address that is used to determine if the user is allowed to login. The
first character specifies the type of network address where ‘0’ specifies an IPX address and ‘1’
specifies an IP address.

The following bytes specify the network address.

For example, if the network address is the IP address 12.34.56.78 then netAddress would be set
to {‘1’, ‘#’, 12, 34, 56, 78, 0}
NMAS Login Policy Management 131

If the network address is the IPX address 112233441122334455661122 then netAddress would be
set to [‘0’, ‘#’, 0x11, 0x22, 0x33, 0x44, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x11, 0x22, 0}

C: UTF-8 string

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_set_address_policy (page 133)
132 NDK: Novell Modular Authentication Services

nmasldap_set_address_policy

Adds a login network address restriction to the target object. Network restrictions indicate which
network address a user can log in from.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int nmasldap_set_address_policy
(
 LDAP *ld,
 char *objectDN,
 nuint32 flags,
 size_t netAddressSize,
 nuint8 *netAddress
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the target object. An LDAP DN.

C: UTF-8 string

flags

(IN) Indicates if the specified network address is to be added to the list of restricted network
addresses, or if the specified network address is to be removed from the list of restricted
addresses.

LOGIN_POLICY_ADD_RESTRICTION (0x1) The specified network address will be added to
the list of restricted network addresses.

LOGIN_POLICY_RM_RESTRICTION (0x2) The specified network address will be removed
from the list of restricted network addresses.

netAddressSize

(IN) Specifies the size of the network address provided in the netAddress parameter.

netAddress

(IN) Designates network addresses from which the user can log in. The first character specifies
the type of network address where ‘0’ specifies an IPX address and ‘1’ specifies an IP address.

The following bytes specify the network address:

For example, if the network address is the IP address 12.34.56.78 then netAddress would be set
to {‘1’, ‘#’, 12, 34, 56, 78, 0}

If the network address is the IPX address 112233441122334455661122 then netAddress would be
set to [‘0’, ‘#’, 0x11, 0x22, 0x33, 0x44, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x11, 0x22, 0}

C: UTF-8 string
NMAS Login Policy Management 133

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_check_login_policy (page 131)
134 NDK: Novell Modular Authentication Services

7 7Password Management Functions

This section describes the NMAS password management functions and extensions in the following
topics:

 Section 7.1, “NMAS Password Management Java Classes,” on page 135

 Section 7.2, “Password Management Requirements,” on page 136

 Section 7.3, “Simple Password Management,” on page 136

 Section 7.4, “Universal Password Management,” on page 137

 Section 7.5, “NMAS LDAP C Password Management Functions,” on page 138

7.1 NMAS Password Management Java Classes
The new Java classes now available in NMAS NDK are consumed by Novell iManager and other
applications that need to control the data required by simple password and universal password login
methods.

While the previous NMAS API functions made native calls on the workstation, the new Java classes
require no native components. We strongly recommend that you use the new LDAP extensions for all
new NMAS development. If you want to administer your login methods through iManager or some
other similar management utility, consider using the Java classes. All of the required Java classes are
located in the JavaToolkit.jar file.

The Java library includes two interfaces, which can be selected depending on the type of LDAP
connection you have to your LDAP server:

 JNDI: Uses an LDAP context object and requires no additional libraries. The JNDI interface was
implemented first and can be used by applications with no additional .jar files besides
NMASToolkit.jar.

 JLDAP: A proprietary Novell library that provides an LDAP connection. If you use this
interface, you will also require an ldap.jar file, which is part of the NMAS NDK download
package (http://www.novell.com/developer/ndk/novell_modular_authentication_service.html).

The two constructors look like this:

public NMASPwdMgr(LdapContext ldapCtx)
{ this.transport = new PwdLdapTransport(ldapCtx); } /**
 * @param pwdTransport A PwdTransport object initialized
 * with the appropriate connection.
 */ public NMASPwdMgr(PwdTransport pwdTransport)
{ this.transport = pwdTransport; }

With the second constructor, the calling application must instantiate the transport object and pass it
in.

Whenever you implement JNDI applications, an extra ldap.jar file is not required to build or deploy it
because it remains an unused constructor in a class in a .jar file.
Password Management Functions 135

http://www.novell.com/developer/ndk/novell_modular_authentication_service.html
http://www.novell.com/developer/ndk/novell_modular_authentication_service.html

To review all of the Java classes delivered in the NMAS NDK, see the Chapter 9, “NMAS Javadoc
References,” on page 171.

7.2 Password Management Requirements
Before implementing the NMAS management functions, make sure your development environment
contains the following files:

 C Development: nmasext.h, nmasPkt.h, ldap.h.

 Java Development: com.novell.security.nmas.mgmt.NMASLoginDataMgr.java,
com.novell.security.nmas.mgmt.NMASPwdMgr.java, and
com.novell.security.nmas.mgmt.NMASSimplePwdMgr.java. These classes provide the
highest level interface to the NMAS management API. These classes also access the lower level
“request” and “response” classes. The encoding and decoding of data is handled in the
“BerEncoding/Decoding” classes.

7.2.1 Other Development Requirements

Before implementing the NMAS LDAP password management routines, you should have a thorough
understanding of the following concepts:

 Secure Socket Layer (SSL): The NMAS LDAP APIs are dependent upon over-the-wire, SSL
technology. For more information about SSL, see the SSL security topics in NDK: LDAP
Libraries for C.

 Java SSL: When you connect with a server using an SSL connection, LDAP will accept data even
if it’s not formatted for SSL. However, in order for an NMAS module to recognize and handle
data requests, transmitted data must be encrypted using SSL.

7.3 Simple Password Management

Simple Password Management C Functions:

 nmasldap_put_simple_pwd (page 139)

 nmasldap_delete_simple_pwd (page 140)

 nmasldap_get_simple_pwd (page 141)

The simple password management functions include the following (for more complete descriptions,
see NMAS Javadoc References (../api/index.html)):

 deleteSimplePwd

 getSimplePwd

 isSimplePwdAssigned

 getSimplePwd

A viewable simple password management example is available at the Novell Modular
Authentication Services Sample Code (../../../samplecode/nmas_sample/index.htm) page.
136 NDK: Novell Modular Authentication Services

../api/index.html
../../../samplecode/nmas_sample/index.htm
../../../samplecode/nmas_sample/index.htm

7.4 Universal Password Management
The universal password management functions and methods include the following:

 “Password Management C Functions:” on page 137

 “Universal Password Management Java Methods” on page 137

 “Universal Password Management Example” on page 137

These functions call the standard ldap_extended_operation with the OID assigned for each request.

The NMAS LDAP extension handler receives the request, then calls the appropriate NMAS Server
function to perform the requested operation. The handler then receives a reply from the NMAS
Server function and will send the reply back to the client.

Password Management C Functions:

 nmasldap_change_password (page 142)

 nmasldap_set_password (page 143)

 nmasldap_delete_password (page 144)

 nmasldap_get_password (page 145)

 nmasldap_get_password_policy_dn (page 146)

 nmasldap_policy_check_current_password (page 147)

 nmasldap_policy_check_password (page 148)

 nmasldap_get_password_status (page 149)

 nmasldap_get_password_status_ex (page 151)

 nmasldap_get_user_random_password (page 153)

 nmasldap_get_random_password (page 154)

Universal Password Management Java Methods

Access the following Universal Password Management methods defined in the NMASPwdMgr (../
api/com/novell/security/nmas/mgmt/NMASPwdMgr.html) class (see all NMAS Javadoc References
(../api/index.html)):

 changePwd

 deletePwd

 getPwd

 getPwdPolicyDN

 getPwdStatus

 pwdPolicyCheck

 setPwd

Universal Password Management Example

A viewable universal password management example is available at the Novell Modular
Authentication Services Sample Code (../../../samplecode/nmas_sample/index.htm) page.
Password Management Functions 137

../api/com/novell/security/nmas/mgmt/NMASPwdMgr.html
../api/index.html
../../../samplecode/nmas_sample/index.htm
../../../samplecode/nmas_sample/index.htm

7.5 NMAS LDAP C Password Management Functions
The NMAS LDAP C functions are described in this section. Viewable password management
examples are available at the Novell Modular Authentication Services Sample Code (../../../
samplecode/nmas_sample/index.htm) page.
138 NDK: Novell Modular Authentication Services

../../../samplecode/nmas_sample/index.htm

nmasldap_put_simple_pwd

Sets the simple password for the object provided by the passed-in Distinguished Name.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_put_simple_pwd
(
 LDAP *ld,
 char *objectDN,
 char pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

pwd

(IN) The password string.

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_delete_simple_pwd (page 140), and nmasldap_get_simple_pwd (page 141)
Password Management Functions 139

nmasldap_delete_simple_pwd

Deletes a simple password from the object provided by the passed-in Distinguished Name.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_delete_simple_pwd
(
 LDAP *ld,
 char *objectDN
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_put_simple_pwd (page 139) and nmasldap_get_simple_pwd (page 141)
140 NDK: Novell Modular Authentication Services

nmasldap_get_simple_pwd

Gets the simple password for the object provided by the passed-in Distinguished Name.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_get_simple_pwd
(
 LDAP *ld,
 char *objectDN,
 size_t pwdLen,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

pwdLen

(OUT) Password length in bytes.
C: size_t int

pwd

(OUT) The password string.

C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_put_simple_pwd (page 139), and nmasldap_delete_simple_pwd (page 140)
Password Management Functions 141

nmasldap_change_password

Changes the password of the specified object.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_change_password
(
 LDAP *ld,
 char *objectDN,
 char *oldPwd,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

oldPwd

(IN) Specifies the user’s old password.
C: UTF-8 string

pwd

(IN) Specifies the user’s new password.
C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_set_password (page 143), nmasldap_get_password (page 145), and
nmasldap_delete_password (page 144)
142 NDK: Novell Modular Authentication Services

nmasldap_set_password

Writes the user’s new password.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_set_password
(
 LDAP *ld,
 char *objectDN,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

pwd

(IN) The password that is to be set as the new password.

C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_change_password (page 142), nmasldap_get_password (page 145), and
nmasldap_delete_password (page 144)
Password Management Functions 143

nmasldap_delete_password

Deletes the password of the object specified.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

void deletePwd
(
 LDAP *ld,
 char *objectDN
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_change_password (page 142), nmasldap_set_password (page 143), and
nmasldap_get_password (page 145)
144 NDK: Novell Modular Authentication Services

nmasldap_get_password

Reads the password.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_get_password
(
 LDAP *ld,
 char *objectDN,
 size_t *pwdLen,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

pwLen

(OUT) Password length in bytes.
C: size_t int

pwd

(OUT) Specifies the password.
C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_change_password (page 142), nmasldap_set_password (page 143), and
nmasldap_delete_password (page 144)
Password Management Functions 145

nmasldap_get_password_policy_dn

Follows an established password algorithm up the tree to find the password policy that relates to the
specified object, then returns that password policy’s distinguished name.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_get_password_policy_dn
(
 LDAP *ld,
 char *objectDN,
 nuint *dnSize,
 char *dn
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

dnSize

(OUT) Size of distinguished name in bytes.
C: nuint string

dn

(OUT) The distinguished name.
C: char string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_policy_check_current_password (page 147), and nmasldap_policy_check_password
(page 148)
146 NDK: Novell Modular Authentication Services

nmasldap_policy_check_current_password

Checks a user’s current password to determine if it matches the password policy that is effective for
the user.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_policy_check_current_password
(
 LDAP *ld,
 char *objectDN
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login’ data. An LDAP DN.
C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_get_password_policy_dn (page 146), and nmasldap_policy_check_password (page 148)
Password Management Functions 147

nmasldap_policy_check_password

Checks the specified password to determine if it matches the password policy that is effective for the
specified user.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_policy_check_password
(
 LDAP *ld,
 char *objectDN,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the object that holds the login data. An LDAP DN.
C: UTF-8 string

pwd

(IN) (Optional) A password that is to be checked against the password policy. If this parameter is
NULL the current password is checked against the password policy.

C: UTF-8 string

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

nmasldap_get_password_policy_dn (page 146), and nmasldap_policy_check_current_password
(page 147)
148 NDK: Novell Modular Authentication Services

nmasldap_get_password_status

Returns the status of the target object’s Universal Password and Simple Password.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int nmasldap_get_password_status
(
 LDAP *ld
 char *objectDN
 unsigned int *pwdStatus,
 unsigned int *simplePwdStatus
);

Parameters

ld

(IN) The LDAP session handle

objectDN

(IN) Identifies the target object. An LDAP DN.

C: UTF-8 string

pwdStatus

(OUT) Flags that indicate the status of the target object’s Universal Password. A combination of
the following flag may be set.

SPM_UPWD_ENABLED (0x1) Universal Password is enabled.

SPM_UPWD_SET (0x2) Universal Password has a value.

SPM_UPWD_HISTORY_FULL (0x4) The Universal Password history is full.

SPM_UPWD_MATCHES_NDS (0x10) The Universal Password value matches the NDS
Password Hash.

SPM_UPWD_OLDER_THAN_NDS (0x20) The NDS Password Hash has been set since the last
time the Universal Password was set.

SPM_UPWD_MATCHES_SPWD (0x40) The Universal Password value matches the Simple
Password.

simplePwdStatus

(OUT) Flags that indicate the status of the target object’s Simple Password. A combination of the
following flag may be set.

SPM_SPWD_SET (0x1) The Simple Password has a value.

SPM_SPWD_IS_CLEARTEXT (0x2) The Simple Password is not stored as a one-way hash such
as SHA-1, SSHA-1, MD5, or UnixCrypt.

SPM_SPWD_MATCHES_NDS (0x10) The Simple Password value matches the NDS Password
Hash.
Password Management Functions 149

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_get_password_status_ex (page 151)
150 NDK: Novell Modular Authentication Services

nmasldap_get_password_status_ex

Returns the status of the target object’s Universal Password and Simple Password.

Syntax

C

#include <ldap.h>
#include <ntypes.h>
#include <nmasext.h>

int nmasldap_get_password_status_ex
(
 LDAP *ld,
 char *objectDN,
 unsigned int *serverVersion,
 unsigned int *pwdStatus,
 unsigned int *simplePwdStatus
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the target object. An LDAP DN.

C: UTF-8 string

serverVersion

(OUT) Indicates the version of the status data returned by the server. Possible values are the
following:

NMAS_LDAP_PWD_STATUS_VERSION1 (1) Indicates that the server does not support the
Distribution Password status flags or the Administrator Set Universal Password flag.

NMAS_LDAP_PWD_STATUS_VERSION2 (2) Indicates that the server supports the Distribution
Password status flags and the Administrator Set Universal Password flag.

pwdStatus

(OUT) Flags that indicate the status of the target object’s Universal Password. A combination of
the following flag may be set:

SPM_UPWD_ENABLED (0x1) Universal Password is enabled.

SPM_UPWD_SET (0x2) Universal Password has a value.

SPM_UPWD_HISTORY_FULL (0x4) The Universal Password history is full.

SPM_UPWD_MATCHES_NDS (0x10) The Universal Password value matches the NDS
Password Hash.

SPM_UPWD_OLDER_THAN_NDS (0x20) The NDS Password Hash has been set since the last
time the Universal Password was set.

SPM_UPWD_MATCHES_SPWD (0x40) The Universal Password value matches the Simple
Password.
Password Management Functions 151

SPM_DPWD_SET (0x100) The Distribution Password has a value.

SPM_UPWD_MATCHES_DPWD (0x200) The Universal Password value matches the
Distribution Password.

SPM_UPWD_SET_BY_ADMIN (0x1000) The Universal Password was last set by someone other
than the user.

simplePwdStatus

(OUT) Flags that indicate the status of the target object’s Simple Password. A combination of the
following flag may be set:

SPM_SPWD_SET (0x1) The Simple Password has a value.

SPM_SPWD_IS_CLEARTEXT (0x2) The Simple Password is not stored as a one-way hash such
as SHA-1, SSHA-1, MD5, or UnixCrypt.

SPM_SPWD_MATCHES_NDS (0x10) The Simple Password value matches the NDS Password
Hash.

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_get_password_status (page 149)
152 NDK: Novell Modular Authentication Services

nmasldap_get_user_random_password

Generates and returns a random password that fulfills the requirements specified by the password
policy that is effective for the target user.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

int nmasldap_get_user_random_password
(
 LDAP *ld,
 char *objectDN,
 size_t *pwdLen,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

objectDN

(IN) Identifies the target object. An LDAP DN.

C: UTF-8 string

pwLen

(IN/OUT) Length of the random password in bytes. It should be set by the caller to the size (in
bytes) of the password buffer. After this function returns, it is set to the actual size (in bytes) of
the password returned in the password buffer.

C: size_t int

pwd

(OUT) Random password

C: UTF-8 string

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_get_random_password (page 154)
Password Management Functions 153

nmasldap_get_random_password

Generates and returns a random password that fulfills the requirements specified by the input
password policy.

Syntax

C

#include <nmas.h>
#include <nmasext.h>

 int nmasldap_get_random_password
(
 LDAP *ld,
 char *xmlPwdPolicy,
 size_t *pwdLen,
 char *pwd
);

Parameters

ld

(IN) The LDAP session handle.

xmlPwdPolicy

(IN) Specifies the XML password policy that is used to generate the random password. The
format of the XML password policy is described at http://www.novell.com/coolsolutions/
feature/18589.html.

C: UTF-8 string

pwLen

(OUT) Length of the random password in bytes.

C: size_tint

pwd

(OUT) Random password.

C: UTF-8 string

Return Codes

Returns 0 if successful; not equal to 0 if not successful and an NMAS error code is returned.

See Also

nmasldap_get_user_random_password (page 153)
154 NDK: Novell Modular Authentication Services

8 8Identification Method Function

NMAS_LOGIN_IDENTITY (page 159) is a new NMAS™ login identity method that replaces
NMAS_GetUserName (obsolete 3/03) (page 168) and simplifies the user NMAS GUI interface. The
NMAS Identification Method function enables you to invoke user-specified login methods for your
Novell® Login Client. This section includes the following topics:

 Section 8.1, “Identification Method Function Descriptions,” on page 155

 Section 8.2, “Login Control Registry Settings,” on page 157

 Section 8.3, “NMAS Log-in Method Function Descriptions,” on page 158

8.1 Identification Method Function Descriptions
When NMAS Login is invoked through Client32™, it can optionally use a third-party DLL to retrieve
the username. The DLL must export the API described by NMAS_LOGIN_IDENTITY (page 159).
This function enables you to use a wide range of authentication methods including:

 Biometric scanning devices (fingerprint, iris, retina, lips, etc.).

 Token devices (“smart” cards and other physical devices that contain encoded user
information).

 Conventional password login methods.

8.1.1 Implementing an ID Plug-in

1. Similar to the device monitor plug-in, implementing an ID plug-in requires compiling a DLL
that exports register, start, and stop calls. To do this, the ID plug-in must implement three entry
points:

 *LPFN_NMAS_RegisterIdentityPlugin (page 161)

 *LPFN_NMAS_StartIdentityPlugin (page 163)

 *LPFN_NMAS_StopIdentityPlugin (page 164)

2. A fourth entry point, *LPFN_NMAS_SetLoginIdentity (page 162), also is implemented by the
NMAS client GUI.

Just before the NMAS client GUI is displayed, it looks in the registry for the value:

IDDLPATH

3. The DLL specified net registry value then calls the *LPFN_NMAS_RegisterIdentityPlugin
(page 161) entry point. When the entry point is called, it passes a pointer to its
*LPFN_NMAS_SetLoginIdentity (page 162) call. This function then expects to receive a pointer
to the DLL’s *LPFN_NMAS_StartIdentityPlugin (page 163) and
*LPFN_NMAS_StopIdentityPlugin (page 164) calls.
Identification Method Function 155

When the NMAS client GUI has initialized, it calls the DLL NMAS_StartIdentityPlugin
through the pointer supplied in the register call. This tells the plug-in to start monitoring its
login device to determine the user who corresponds to that device.

4. When the ID plug-in receives the user information, it can then call the
*LPFN_NMAS_SetLoginIdentity (page 162) function through the pointer provided in the
registry call. The NMAS login identity structure is then passed in, which provides the required
identity information.

5. When the NMAS client GUI is ready to unload or when the ID plug-in needs to stop,
*LPFN_NMAS_StopIdentityPlugin (page 164) is called. Like the process in secure workstation,
after the client GUI makes the StopIdentity call, it might unload the DLL. Consequently, your
DLL should ensure that all of its threads are stopped and block
*LPFN_NMAS_StopIdentityPlugin (page 164) until the DLL is ready to be unloaded.

IMPORTANT: The NMAS_StartIdentityPlugin call, like Secure Workstation, can be called
multiple times without a call to stop. Consequently, the DLL you compile should be able to
detect, for instance, if a thread is monitoring the log-in device and, if so, you must not start
another thread.

6. The validFields variable in NMAS_LOGIN_IDENTITY (page 159) uses the flags described in
Valid Flags Define table to provide one field or any combination of the fields contained in this
function to the NMAS client GUI. This parameter allows your DLL to identify which fields are
provided to the GUI.

Based on the requirements set by validFields, the NMAS client fills either the userName, context,
tree, server, sequence, or clearance provided by NMAS_LOGIN_IDENTITY (page 159) into the
login dialog box. If configured to do so, the user can then click OK by default, as shown in
Figure 8-1 on page 156.

NOTE: Changing the registry setting changes the default to allow the user to review and change
input parameters.

Figure 8-1 shows an example of an authentication control screen that is returned when a user
opts to enter his or her ID manually.

Figure 8-1 Novell Login Authentication Control Screen
156 NDK: Novell Modular Authentication Services

8.1.2 Valid Login Method Flags

The validFields variable in NMAS_LOGIN_IDENTITY (page 159) can use the flags described below to
provide one field or any combination of the fields to the NMAS client GUI. The validFields parameter
allows your DLL to identify which fields are provided to the GUI:

NOTE: The identity plug-in provides one field or any combination of the fields contained in this
function to the NMAS client GUI.

8.2 Login Control Registry Settings
The following registry settings affect the operation of the new login control:

Valid Flag Defines Value

NLI_FIELD_USERNAME 0x00000001

NLI_FIELD_CONTEXT 0x00000002

NLI_FIELD_TREE 0x00000004

NLI_FIELD_SERVER 0x00000008

NLI_FIELD_SEQUENCE 0x00000010

NLI_FIELD_CLEARANCE 0x00000020

Key Value Type Description

HKLM\Software\Novell\NMAS\1.0\ID IDDLLPath String Contains the full path and
name of a DLL that exports
the NMAS_GetUserName
function.

HKLM\Software\Novell\NMAS\1.0\ID RestartPluginOnFailure DWORD If this value is 1, the client
restarts the ID plug-in when
the login dialog box is
displayed after a failed login. If
the value is 0, the client does
not restart the ID plug-in after
a login failure. The default
behavior is 0.

HKLM\Software\Novell\NMAS\1.0\ID Click OK DWORD If this value is zero, the NMAS
client does not automatically
proceed with login after its
*LPFN_NMAS_SetLoginIdenti
ty (page 162) function is
called. The default behavior is
to automatically proceed with
login after
NMAS_SetLoginIdentity is
called.
Identification Method Function 157

8.3 NMAS Log-in Method Function Descriptions
The NMAS Log-in Method functions are described below:

 NMAS_LOGIN_IDENTITY (page 159)

 LPFN_DeviceRemoved (page 160)

 *LPFN_NMAS_RegisterIdentityPlugin (page 161)

 *LPFN_NMAS_SetLoginIdentity (page 162)

 *LPFN_NMAS_StartIdentityPlugin (page 163)

 *LPFN_NMAS_StopIdentityPlugin (page 164)

 RegisterDeviceMonitorPlugin (page 165)

 StartDeviceMonitorPlugin (page 166)

 StopDeviceMonitorPlugin (page 167)

HKLM\Software\Novell\NMAS\1.0\ID IDPollInterval
(Obsolete
3/2003)

DWORD This was the “poll interval” for
NMAS_GetUserName, but is
now obsolete. It specified the
time in seconds between calls
to NMAS_GetUserName.

HKLM\Software\Novell\NMAS\1.0\ID IDPrompt String Specifies the text displayed in
the login dialog box to prompt
for an identification device.
The default is “Present Card.”

HKLM\Software\Novell\NMAS\1.0\ID IDWaitPrompt String Specifies the text displayed in
the login dialog box after the
user’s identity has been
obtained and the login
process has begun. The
default is “Please wait...”

HKLM\Software\Novell\NMAS\1.0\ID ShowCancel DWORD If set to 0, the Cancel button
in the login dialog box is
hidden.

HKLM\Software\Novell\NMAS\1.0\ID ShowOK DWORD If set to 0, the OK button in the
login dialog box is hidden.

HKLM\Software\Novell\Login Advanced DWROD If set to 0, the Advanced
button in the login dialog box
is hidden. This is a Client32
setting, not an NMAS setting.

HKLM\Software\Novell\NMAS\1.0\ID ShowUsername DWORD If set to 0, the Manually Enter
Username check box in the
login dialog box is hidden.

Key Value Type Description
158 NDK: Novell Modular Authentication Services

NMAS_LOGIN_IDENTITY

Enables the client to pass in all user identification factors. The client DLL can then change what is
passed into the buffer.

Syntax

C

#include <NMASLoginInfo.h>

struct NMAS_LOGIN_IDENTITY
(
 int *size,
 int *validFields,
 unicode *userName [NLI_MAX_FIELD_SIZE],
 unicode *context[NLI_MAX_FIELD_SIZE],
 unicode *tree[NLI_MAX_FIELD_SIZE],
 unicode *server[NLI_MAX_FIELD_SIZE],
 unicode *sequence[NLI_MAX_FIELD_SIZE],
 unicode *clearance[NLI_MAX_FIELD_SIZE]
);

Parameters

size

(IN) Set to the size structure of the login device as defined by the parameters in the function.

validFields

(IN) Allows your DLL to identify which flag fields are provided to the GUI, using the Valid
Login Method Flags.

userName

(IN) The user-supplied eDirectory username that is used for login.

context

(IN) The context that is used for login.

tree

(IN) The tree name that is used for login.

server

(IN) The server that is used for login.

sequence

(IN) The sequence that is used for login.

clearance

(IN) The name of the clearance that is used for login.
Identification Method Function 159

LPFN_DeviceRemoved

When the Secure Workstation service calls RegisterDeviceMonitorPlugin (page 165), it provides a
pointer to LPFN_DeviceRemoved (page 160). The third-party device monitor plug-in DLL is
expected to save the pointer and call this function when the Secure Workstation service detects that
its login device has been removed.

Syntax

C

#include <wadevmon.h>

typ def *LPFN_DeviceRemoved
(
 DWORD sessionid,
 DWORD methodid
);

Parameters

sessionid

(IN) The session ID that was passed to the DLL when StartDeviceMonitorPlugin was called.

methodid

(IN) The NMAS method ID number specified for your login method.

Remarks

For more information about this function, see Section C.4, “Secure Workstation Login Method,” on
page 213 and “Implementing A Secure Workstation Plug-in” on page 214.
160 NDK: Novell Modular Authentication Services

*LPFN_NMAS_RegisterIdentityPlugin

An identity plug-in must implement this function. The NMAS client login dialog box calls it, passes a
pointer to its NMAS_SetLoginIdentity function, and then expects to receive pointers to the
NMAS_StartIdentityPlugin and NMAS_StopIdentityPlugin functions in the DLL.

Syntax

C

#include <NMASLoginInfo.h>

typedef int LPFN_NMAS_RegisterIdentityPlugin
(
 LPFN_NMAS_SetLoginIdentity setIdentity,
 LPFN_NMAS_StartIdentityPlugin *startIdentityPlugin,
 LPFN_NMAS_StopIdentityPlugin *stopIdentityPlugin
);

Parameters

setIdentity

(IN) Provides a pointer to the NMAS client login dialog’s box *LPFN_NMAS_SetLoginIdentity
(page 162) function.

startIdentityPlugin

(OUT) Points to the ID plug-in’s *LPFN_NMAS_StartIdentityPlugin (page 163) function.

stopIdentityPlugin

(OUT) Points to the ID plug-in’s *LPFN_NMAS_StopIdentityPlugin (page 164) function

Remarks

The NMAS client login dialog box calls this function immediately after loading the ID plug-in DLL.
This function is called only once each time the NMAS client login dialog box is displayed.
Identification Method Function 161

*LPFN_NMAS_SetLoginIdentity

Currently implemented in the NMAS client login dialog box. An identity plug-in DLL should call
this function when it has retrieved the user ID.

Syntax

C

#include <NMASLoginInfo.h>

int LPFN_NMAS_SetLoginIdentity
(
 NMAS_LOGIN_IDENTITY *loginIdentity
);

Parameters

loginIdentity

(IN) The login information for the user identified by the device.

Remarks

An ID plug-in should call this function when it has retrieved the user ID.
162 NDK: Novell Modular Authentication Services

*LPFN_NMAS_StartIdentityPlugin

Used with *LPFN_NMAS_StartIdentityPlugin (page 163), an identity plug-in DLL must implement
these calls.

Syntax

C

#include <NMASLoginInfo.h>

int LPFN_NMAS_StartIdentityPlugin ();

Remarks

The NMAS client login dialog box calls this entry point to tell the ID plug-in that it should start
monitoring its device. After this API has been called, the ID plug-in can call the login dialog
*LPFN_NMAS_SetLoginIdentity (page 162) entry point with login information for the user.

The NMAS client login dialog box can make multiple calls to this entry point without calling
*LPFN_NMAS_StopIdentityPlugin (page 164). An ID plug-in must detect this condition and handle
it accordingly.
Identification Method Function 163

*LPFN_NMAS_StopIdentityPlugin

Used with *LPFN_NMAS_StopIdentityPlugin (page 164), an identity plug-in DLL must implement
these calls.

Syntax

C

#include <NMASLoginInfo.h>

typedef int LPFN_NMAS_StopIdentityPlugin ();

Remarks

The NMAS client login dialog box calls this function to tell an ID plug-in to stop monitoring its
device. The ID plug-in DLL might be unloaded after this entry point returns, so the ID plug-in must
block in this call until all of its threads have stopped and it is ready to be unloaded.
164 NDK: Novell Modular Authentication Services

RegisterDeviceMonitorPlugin

This function is called when the Secure Workstation service starts and your DLL is loaded. Your DLL
can call the function pointer to LPFN_DeviceRemoved (page 160) when it detects that its login device
has been removed.

Syntax

C

#include <wadevmon.h>

int RegisterDeviceMonitorPlugin
(
 LPFN_DeviceRemoved DeviceRemoved
);

Parameters

DeviceRemoved

(IN) Provides a function pointer to LPFN_DeviceRemoved (page 160) (defined in wadevmon.h)
that is called by the DLL when it detects that its login device has been removed.
Identification Method Function 165

StartDeviceMonitorPlugin

The Secure Workstation service calls this function to tell your DLL to start monitoring its device.

Syntax

C

#include <wadevmon.h>

int StartDeviceMonitorPlugin
(
 DWORD sessionid
);

Parameters

sessionid

(IN) The Windows terminal services session ID, which is usually 0 (unless you’re using terminal
services or fast user switching).

Remarks

This function can be called when a new user logs on to the workstation (with or without the Secure
Workstation PCLM), when the workstation is unlocked, or when a user logs into Client32 using a
sequence that includes the Secure Workstation PLCM. The Secure Workstation service can call this
function multiple times without calling StopDeviceMonitorPlugin (page 167).

The plug-in must store the session ID provided in this call and pass it to Secure Workstation’s
LPFN_DeviceRemoved (page 160) call.
166 NDK: Novell Modular Authentication Services

StopDeviceMonitorPlugin

The Secure Workstation service calls this function to tell your DLL to stop monitoring its login device.
This function can be called when the workstation is locked, or when a user logs out of the
workstation.

Syntax

C

#include <wadevmon.h>

int StopDeviceMonitorPlugin
(
 DWORD sessionid
);

Parameters

sessionid

(IN) The terminal services session ID, which is passed in from StartDeviceMonitorPlugin
(page 166), is currently not used but is provided now to support future implementation of
terminal session services.

Remarks

After the Secure Workstation service calls this function, the DLL might be unloaded.

IMPORTANT: Your device monitor plug-in DLL might be unloaded after this call returns. If your
DLL spawned a thread in RegisterDeviceMonitorPlugin (page 165) to monitor the log-in device, you
must block StartDeviceMonitorPlugin (page 166) until the thread is stopped.
Identification Method Function 167

NMAS_GetUserName (obsolete 3/03)

Enables the client to pass in all user identification factors, while DWord allocates the buffer size (512
bytes). However, it is now obsolete and is replaced by NMAS_LOGIN_IDENTITY (page 159). The
client DLL can then change what is passed into the buffer. These interfaces are only available on the
Client32/Windows platform.

Syntax

C

#include <nmas.h>

int NMAS_GetUserName
(
 unicode *userName,
 DWORD *userNameLen,
 unicode *context,
 DWORD *contextLen,
 unicode *tree,
 DWORD *treeLen,
 unicode *server,
 DWORD *serverLen,
 unicode *sequence,
 DWORD *sequenceLen,
 unicode *clearance,
 DWORD *clearanceLen,
 unicode *errorMessage,
 DWORD *errorMessageLen
);

Parameters

userName

(IN/OUT) The full distinguished name of the user.

userNameLen

(IN/OUT) The number of bytes contained in the userName buffer.

context

(IN/OUT) IN: The user-supplied eDirectory context. OUT: The eDirectory context that is used
for login.

contextLen

(IN/OUT) IN: The number of bytes contained in the context buffer. OUT: The length of the string
contained in the context buffer.

tree

(IN/OUT) IN: User-supplied tree name. OUT: The tree name that is used for login.

treeLen

(IN/OUT) IN: The number of bytes in the tree buffer. OUT: The length of the string contained in
the context buffer.
168 NDK: Novell Modular Authentication Services

server

(IN/OUT) IN: User-supplied server name of IP address. OUT: The server that is used for login.

serverLen

(IN/OUT) IN: The number of bytes in the server buffer. OUT: The length of the string contained
in the server buffer.

sequence

(IN/OUT) IN: The user-supplied sequence. This is the sequence that the user selects on the
NMAS tab. OUT: The sequence that is used for login.

sequenceLen

(IN/OUT) IN: The number of bytes in the sequence buffer. OUT: The length of the string
contained in the sequence buffer.

clearance

(IN/OUT) IN: The name of the clearance that the user selected from the NMAS tab. OUT: The
name of the clearance that is used for login.

clearanceLen

(IN/OUT) IN: The number of bytes in the clearance buffer. OUT: The length of the string
contained in the clearance buffer.

errorMessage

(OUT) If an error occurs, this parameter should contain a meaningful error message.

errorMessageLen

(IN/OUT) IN: The number of bytes in the errorMessage buffer. OUT: The length of the string
contained in the errorMessage buffer.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.
Identification Method Function 169

170 NDK: Novell Modular Authentication Services

9 9NMAS Javadoc References

To review all of the Javadoc references for the NMAS NDK, see NMAS Javadoc (../api/index.html).
The following classes are defined in the NMAS com.novell.security.nmas.mgmt package:

9.1 NMAS Interface Classes
 GamsTransport (../api/com/novell/security/nmas/mgmt/GamsTransport.html)

 LoginDataTransport (../api/com/novell/security/nmas/mgmt/LoginDataTransport.html)

 PwdTransport (../api/com/novell/security/nmas/mgmt/PwdTransport.html)

9.2 NMAS Summary Classes
 GamsJLdapTransport (../api/com/novell/security/nmas/mgmt/GamsJLdapTransport.html)

 GamsLdapTransport (../api/com/novell/security/nmas/mgmt/GamsLdapTransport.html)

 GamsMgr (../api/com/novell/security/nmas/mgmt/GamsMgr.html)

 LoginDataJLdapTransport (../api/com/novell/security/nmas/mgmt/
LoginDataJLdapTransport.html)

 LoginDataLdapTransport (../api/com/novell/security/nmas/mgmt/
LoginDataLdapTransport.html)

 NMASChallengeResponse (../api/com/novell/security/nmas/mgmt/
NMASChallengeResponse.html)

 NMASChallengeResponseMgr (../api/com/novell/security/nmas/mgmt/
NMASChallengeResponseMgr.html)

 NMASLoginDataMgr (../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html)

 NMASPwdMgr (../api/com/novell/security/nmas/mgmt/NMASPwdMgr.html)

 NMASPwdStatus (../api/com/novell/security/nmas/mgmt/NMASPwdStatus.html)

 NMASSimplePwd (../api/com/novell/security/nmas/mgmt/NMASSimplePwd.html)

 NMASSimplePwdMgr (../api/com/novell/security/nmas/mgmt/NMASSimplePwdMgr.html)

 PwdJLdapTransport (../api/com/novell/security/nmas/mgmt/PwdJLdapTransport.html)

 PwdLdapTransport (../api/com/novell/security/nmas/mgmt/PwdLdapTransport.html)

9.3 NMAS Exception Classes
 GamsException (../api/com/novell/security/nmas/mgmt/GamsException.html)
NMAS Javadoc References 171

../api/index.html
../api/com/novell/security/nmas/mgmt/GamsTransport.html
../api/com/novell/security/nmas/mgmt/LoginDataTransport.html
../api/com/novell/security/nmas/mgmt/PwdTransport.html
../api/com/novell/security/nmas/mgmt/GamsJLdapTransport.html
../api/com/novell/security/nmas/mgmt/GamsLdapTransport.html
../api/com/novell/security/nmas/mgmt/GamsMgr.html
../api/com/novell/security/nmas/mgmt/LoginDataJLdapTransport.html
../api/com/novell/security/nmas/mgmt/LoginDataLdapTransport.html
../api/com/novell/security/nmas/mgmt/NMASChallengeResponse.html
../api/com/novell/security/nmas/mgmt/NMASChallengeResponseMgr.html
../api/com/novell/security/nmas/mgmt/NMASLoginDataMgr.html
../api/com/novell/security/nmas/mgmt/NMASPwdMgr.html
../api/com/novell/security/nmas/mgmt/NMASPwdStatus.html
../api/com/novell/security/nmas/mgmt/NMASSimplePwd.html
../api/com/novell/security/nmas/mgmt/NMASSimplePwdMgr.html
../api/com/novell/security/nmas/mgmt/PwdJLdapTransport.html
../api/com/novell/security/nmas/mgmt/PwdLdapTransport.html
../api/com/novell/security/nmas/mgmt/GamsException.html

 NMASChallengeResponseException (../api/com/novell/security/nmas/mgmt/
NMASChallengeResponseException.html)

 NMASLoginDataException (../api/com/novell/security/nmas/mgmt/
NMASLoginDataException.html)

 NMASPwdException (../api/com/novell/security/nmas/mgmt/NMASPwdException.html)

9.4 NMAS Constants
 NMASConstants (../api/com/novell/security/nmas/NMASConstants.html)
172 NDK: Novell Modular Authentication Services

../api/com/novell/security/nmas/mgmt/NMASChallengeResponseException.html
../api/com/novell/security/nmas/mgmt/NMASLoginDataException.html
../api/com/novell/security/nmas/mgmt/NMASPwdException.html
../api/com/novell/security/nmas/NMASConstants.html

A ANMAS Error Codes

Decim
al
Value

Hexadecima
l Value Name Description

0 NMAS_SUCCESS The requested function completed
successfully.

-1631 0xFFFFF9A1 NMAS_E_FRAG_FAILURE Indicates that the NMAS™ NCP™
handler failed.

-1632 0xFFFFF9A0 NMAS_E_BAD_REQUEST_SYNTAX Indicates that the NMAS NCP
handler failed.

-1633 0xFFFFF99F NMAS_E_BUFFER_OVERFLOW Buffer passed to
MAF_GetAttribute is not large
enough to store the requested
data.

-1634 0xFFFFF99E NMAS_E_SYSTEM_RESOURCES Message returned when NMAS
server fails to obtain information
from NICI about encryption keys.

-1635 0xFFFFF99D NMAS_E_INSUFFICIENT_MEMORY The NMAS server failed to allocate
memory for some system use.

-1636 0xFFFFF99C NMAS_E_NOT_SUPPORTED Indicates that the login request
operation is not supported by the
current configuration of NMAS.
The error might be returned if the
NMAS Client and the NMAS
Server versions are not the same.
It also might be returned if a login
method that does not support the
disconnected login is invoked
when in the disconnected mode.

-1637 0xFFFFF99B NMAS_E_BUFFER_UNDERFLOW The packet size specified in the
NMAS packet is larger than the
actual size of the packet.

-1638 0xFFFFF99A NMAS_E_NOT_FOUND This error might be returned if an
object does not exist for the
requested username and context.

-1639 0xFFFFF999 NMAS_E_INVALID_OPERATION Indicates that an NMAS internal
error has occurred, caused by the
NMAS protocol getting out of
order.
NMAS Error Codes 173

-1640 0xFFFFF998 NMAS_E_ASN1_DECODE Failed to decode NMAS internal
structures in a signed module.

-1641 0xFFFFF997 NMAS_E_ASN1_ENCODE Failed to encode NMAS internal
structures.

-1642 0xFFFFF996 NMAS_E_LOGIN_FAILED Indicates that the secret (for
example password) presented by
the user is invalid.

-1643 0xFFFFF995 NMAS_E_INVALID_PARAMETER An invalid parameter was passed
to the NMAS function.

-1644 0xFFFFF994 NMAS_E_TIMED_OUT_RECOVERABLE The Client or the server failed to
respond in a timely manner. The
calling software has the option to
retry the request if this error
occurs.

-1645 0xFFFFF993 NMAS_E_TIMED_OUT_NOT_
RECOVERABLE

The Client or the server failed to
respond in a timely manner. The
calling software does not have the
option to retry the request if this
error occurs.

-1646 0xFFFFF992 NMAS_E_TIMED_OUT_UNKNOWN The Client or the server failed to
respond in a timely manner. The
calling software does not have the
option to retry the request if this
error occurs.

-1647 0xFFFFF991 NMAS_E_AUTH_FAILURE The creation of eDirectory™
background authentication
materials failed.

-1648 0xFFFFF990 NMAS_E_INVALID_DN Invalid user distinguished name
specified for login.

-1649 0xFFFFF98F NMAS_E_NO_RESOLVE_DN NMAS was not able to resolve the
specified user distinguished name.

-1650 0xFFFFF98E NMAS_E_NO_RESOLVE_CONN Not used.

-1651 0xFFFFF98D NMAS_E_NO_CRYPTO The Client and server did not
negotiate a session key to be used
for MAF_XRead, MAF_XWrite, or
MAF_XWriteRead.

-1652 0xFFFFF98C NMAS_E_INVALID_VERSION 1) Indicates that the NMAS Client
and NMAS Server versions are
incompatible.

2) Indicates that the NMAS
method and the NMAS Server
versions are incompatible.

-1653 0xFFFFF98B NMAS_E_SYNC_NEEDED Indicates there is a problem with
the SASDFM key exchange being
used.

Decim
al
Value

Hexadecima
l Value

Name Description
174 NDK: Novell Modular Authentication Services

-1654 0xFFFFF98A NMAS_E_PROTOCOL_STATE Indicates that the Client or server
failed for an unknown reason.

-1655 0xFFFFF989 NMAS_E_INVALID_HANDLE The NMAS Handle (also known as
NMAS_ID) passed to the NMAS
function is invalid.

-1656 0xFFFFF988 NMAS_E_INVALID_METHOD 1) NMAS Server failed to validate
the signature of a method.

2) The module size encoded in the
signed portion of the method is
larger than code read from
eDirectory.

-1657 0xFFFFF987 NMAS_E_DEVELOPMENT_VERSION Used internally by NMAS.

-1658 0xFFFFF986 NMAS_E_MISSING_KEY The key attribute for the Login
Configuration attribute or the Login
Secret attribute is missing or
corrupt.

-1659 0xFFFFF985 NMAS_E_ACCESS_NOT_ALLOWED Indicates that the user does not
have sufficient rights to perform
the requested operation.

-1660 0xFFFFF984 NMAS_E_SEQUENCE_NOT_FOUND The specified NMAS login
sequence is invalid.

-1661 0xFFFFF983 NMAS_E_CLEARANCE_NOT_FOUND The specified NMAS login
clearance is invalid.

-1662 0xFFFFF982 NMAS_E_LSM_NOT_FOUND An LSM specified in a login
sequence is not available for the
server platform.

-1663 0xFFFFF981 NMAS_E_LCM_NOT_FOUND An LCM specified in a login
sequence is not available for the
Client platform.

-1664 0xFFFFF980 NMAS_E_SERVER_NOT_FOUND The specified server was not found
during NMAS login.

-1665 0xFFFFF97F NMAS_E_LOGIN_ATTRIBUTE_
NOT_FOUND

The login secret for a particular
login method is not available; for
example, password not set,
fingerprint or biometric data not
available.

-1666 0xFFFFF97E NMAS_E_LEGACY_INVALID_PASSWOR
D

If a Client doesn’t find an NMAS
server, it tries the legacy NDS®
login method and returns this
message if the password fails.

-1667 0xFFFFF97D NMAS_E_ACCOUNT_DISABLED A user account has been disabled
as a result of intruder detection or
administrator action.

Decim
al
Value

Hexadecima
l Value

Name Description
NMAS Error Codes 175

-1668 0xFFFFF97C NMAS_E_ACCOUNT_LOCKED A user account has been locked
as a result of intruder detection.

-1669 0xFFFFF97B NMAS_E_ADDRESS_RESTRICTION Violation of approved login
addresses that are registered on
the user object.

-1670 0xFFFFF97A NMAS_E_CONN_CLEARED Indicates loss of connection to the
server.

-1671 0xFFFFF979 NMAS_E_TIME_RESTRICTION Violations of time restrictions that
are set on the user object for
logging in to a server.

-1672 0xFFFFF978 NMAS_E_SHORT_TERM_SECRET Not used. Replaced by
NMAS_E_AUTH_FAILED.

-1673 0xFFFFF977 NMAS_E_NO_NMAS_ON_TREE NMAS is not installed in the
specified tree. This typically occurs
when using the method
management API.

-1674 0xFFFFF976 NMAS_E_NO_NMAS_ON_SERVER NMAS is not installed on the
specified server. This typically
occurs when using the method
management API.

-1675 0xFFFFF975 NMAS_E_REQUEST_CHALLENGED The normal error code returned
from a proxy LCM to indicate that a
challenge was requested by the
LSM.

-1676 0xFFFFF974 NMAS_E_LOGIN_CANCELED The normal error code returned to
NMAS from a method if the user
cancelled the login from a LCM.

-1677 0xFFFFF973 NMAS_E_LOCAL_CRED_STORE Not used.

-1678 0xFFFFF972 NMAS_E_REMOTE_CRED_STORE Not used.

-1679 0xFFFFF971 NMAS_E_SMC_NICM Not used.

-1680 0xFFFFF970 NMAS_E_SEQUENCE_NOT_
AUTHORIZED

Although a login sequence is valid,
the requested user is not
authorized to use it to log in.

-1681 0xFFFFF96F NMAS_E_TRANSPORT A transport callback routine was
not provided to the NMAS Client.

-1682 0xFFFFF96E NMAS_E_CRYPTO_FAILED_INIT A rare cryptography initialization
error that can occur because of a
failure in the framework of the host
computer.

-1683 0xFFFFF96D NMAS_E_DOUBLEBYTE_FAILED_INIT A rare initialization error that can
occur because of a failure in the
framework of the host computer.

Decim
al
Value

Hexadecima
l Value

Name Description
176 NDK: Novell Modular Authentication Services

-1684 0xFFFFF96C NMAS_E_CODEPAGE_FAILED_INIT A rare initialization error that can
occur because of a failure in the
framework of the host computer.

-1685 0xFFFFF96B NMAS_E_UNICODE_FAILED_INIT A rare initialization error that can
occur because of a failure in the
framework of the host computer.

-1686 0xFFFFF96A NMAS_E_DLL_FAILED_LOADING NMAS Client failed to load.

-1687 0xFFFFF969 NMAS_E_EVAL_VERSION_WARNING Indicates that the NMAS
Evaluation Edition is being used to
log in.

-1688 0xFFFFF968 NMAS_E_CONCURRENT_LOGIN Violation of the number of
workstations that a user can log in
to concurrently, as assigned by the
network administrator.

-1689 0xFFFFF967 NMAS_E_THREAD_CREATE An internal error seen primarily on
NetWare 6 when NMAS fails to
create a thread.

-1690 0xFFFFF966 NMAS_E_SECURE_CHANNEL_
REQUIRED

SSL was not used when
attempting to administer NMAS
through the NMAS LDAP
extension functions.

-1691 0xFFFFF965 NMAS_E_NO_DEFAULT_USER_
SEQUENCE

A login sequence was not
specified during login and the user
does not have a default login
sequence.

-1692 0xFFFFF964 NMAS_E_NO_TREENAME NMAS was unable to get the tree
name from eDirectory.

-1693 0xFFFFF963 NMAS_E_MECH_NOT_FOUND The specified Simple
Authentication Security Layer
(SASL) mechanism is not
available.

-1694 0xFFFFF962 NMAS_E_ACCOUNT_NOT_ACTIVATED The account has been created but
the date and time that the account
can be activated has not been
reached.

-1695 0xFFFFF961 NMAS_E_INCOMPATIBLE_LOGIN_DATA The stored login data cannot be
used by the login method to
validate the user. For example, if
the password is stored as a digest
value, such as SHA-1 and the
DIGEST-MD5 login method is
used to log in, the login fails with
this error

-1696 0xFFFFF960 NMAS_E_PASSWORD_HISTORY_FULL The password change failed
because the password history for
the user cannot store any more
passwords.

Decim
al
Value

Hexadecima
l Value

Name Description
NMAS Error Codes 177

-1697 0xFFFFF95F NMAS_E_INVALID_SPM_REQUEST The requested password operation
is invalid.

-1698 0xFFFFF95E NMAS_E_PASSWORD_MISMATCH The password change failed
because the old password
provided by the user does not
match the user’s current
password.

-1699 0xFFFFF95D NMAS_E_OBSOLETE_METHOD An attempt to update the login
method failed because the current
version is newer.

-16000 0xFFFFC180 NMAS_E_PASSWORD_TOO_LONG The password change or set
request failed because the
password is longer than allowed
by the password policy.

-16001 0xFFFFC17F NMAS_E_PASSWORD_UPPER_MIN The password change or set
request failed because the
password does not contain the
minimum number of uppercase
characters required by the
password policy.

-16002 0xFFFFC17E NMAS_E_PASSWORD_UPPER_MAX The password change or set
request failed because the
password contains more than the
maximum number of uppercase
characters allowed by the
password policy.

-16003 0xFFFFC17
D

NMAS_E_PASSWORD_LOWER_MIN The password change or set
request failed because the
password does not contain the
minimum number of lowercase
characters required by the
password policy.

-16004 0xFFFFC17
C

NMAS_E_PASSWORD_LOWER_MAX The password change or set
request failed because the
password contains more than the
maximum number of lowercase
characters allowed by the
password policy.

-16005 0xFFFFC17B NMAS_E_PASSWORD_NUMERIC_
DISALLOWED

The password change or set
request failed because the
password contains numeric
characters that are disallowed by
the password policy.

-16006 0xFFFFC17A NMAS_E_PASSWORD_NUMERIC_
FIRST

The password change or set
request failed because the first
character of the password is a
numeric character that is
disallowed by the password policy.

Decim
al
Value

Hexadecima
l Value

Name Description
178 NDK: Novell Modular Authentication Services

-16007 0xFFFFC179 NMAS_E_PASSWORD_NUMERIC_LAST The password change or set
request failed because the last
character of the password is a
numeric character that is
disallowed by the password policy.

-16008 0xFFFFC178 NMAS_E_PASSWORD_NUMERIC_MIN The password change or set
request failed because the
password does not contain the
minimum number of numeric
characters required by the
password policy.

-16009 0xFFFFC177 NMAS_E_PASSWORD_NUMERIC_MAX The password change or set
request failed because the
password contains more than the
maximum number of numeric case
characters allowed by the
password policy.

-16010 0xFFFFC176 NMAS_E_PASSWORD_SPECIAL_
DISALLOWED

The password change or set
request failed because the
password contains non-
alphanumeric characters that are
disallowed by the password policy.

-16011 0xFFFFC175 NMAS_E_PASSWORD_SPECIAL_FIRST The password change or set
request failed because the first
character of the password is a
non-alphanumeric character that is
disallowed by the password policy.

-16012 0xFFFFC174 NMAS_E_PASSWORD_SPECIAL_LAST The password change or set
request failed because the last
character of the password is a
non-alphanumeric character that is
disallowed by the password policy.

-16013 0xFFFFC173 NMAS_E_PASSWORD_SPECIAL_MIN The password change or set
request failed because the
password does not contain the
minimum number of non-
alphanumeric characters required
by the password policy.

-16014 0xFFFFC172 NMAS_E_PASSWORD_SPECIAL_MAX The password change or set
request failed because the
password contains more than the
maximum number of non-
alphanumeric case characters
allowed by the password policy.

-16015 0xFFFFC171 NMAS_E_PASSWORD_REPEAT_
CHAR_MAX

The password change or set
request failed because the
password contains a character that
appears in the password more
times than is allowed by the
password policy.

Decim
al
Value

Hexadecima
l Value

Name Description
NMAS Error Codes 179

-16016 0xFFFFC170 NMAS_E_PASSWORD_CONSECUTIVE_
MAX

The password change or set
request failed because the
password contains a character that
appears consecutively more times
than is allowed by the password
policy.

-16017 0xFFFFC16F NMAS_E_PASSWORD_UNIQUE_MIN The password change or set
request failed because the
password does not contain the
minimum number of unique
characters required by the
password policy.

-16018 0xFFFFC16E NMAS_E_PASSWORD_LIFE_MIN The password change or set
request failed because the
minimum amount of time since the
last successful password change
as required by the password policy
has not elapsed.

-16019 0xFFFFC16
D

NMAS_E_PASSWORD_EXCLUDE The password change or set
request failed because the
password appears in the excluded
password list of the password
policy.

-16020 0xFFFFC16
C

NMAS_E_PASSWORD_ATTR_VALUE The password change or set
request failed because the
password is the same as a value
of a user attribute that is
disallowed by the password policy.

-16021 0xFFFFC16B NMAS_E_PASSWORD_EXTENDED_
DISALLOWED

The password change or set
request failed because the
password contains extended
characters that are disallowed by
the password policy.

-16022 0xFFFFC16A NMAS_E_INVALID_PASSWORD_POLCY The password policy associated
with the user is not a valid
password policy.

-16023 0xFFFFC169 NMAS_E_LOGIN_FAILED_ERROR_
DISPLAYED

The password change or set
request failed because NMAS
experienced an internal error.

-16024 0xFFFFC168 NMAS_E_CFG_METHOD_EXISTS The client configuration already
contains the method data. The
result of trying to add a duplicate
method to the configuration data.

-16025 0xFFFFC167 NMAS_E_CFG_NO_DATA No client configuration data exists.

-16026 0xFFFFC166 NMAS_E_CFG_NO_ACCESS No access to client configuration
data.

Decim
al
Value

Hexadecima
l Value

Name Description
180 NDK: Novell Modular Authentication Services

-16027 0xFFFFC165 NMAS_E_CFG_NO_MORE_ITEMS No more items in the client
configuration data. Signals the
end of the data enumeration.

-16028 0xFFFFC164 NMAS_E_CFG_METHOD_NOT_FOUND The client configuration data does
not contain the method
information.

-16029 0xFFFFC163 NMAS_E_CFG_INVALID_DATA The client configuration data is
invalid.

-16030 0xFFFFC162 NMAS_E_CFG_IDPLUGIN_EXISTS The client configuration data
already contains a identity plugin
entry.

-16031 0xFFFFC161 NMAS_E_CFG_IDPLUGIN_NOT_FOUND No identity plugin data was found
in the client configuration.

-16032 0xFFFFC16 NMAS_E_CFG_TRACEINFO_EXISTS The trace information exits in the
configuration data.

-16033 0xFFFFC15F NMAS_E_CFG_TRACEINFO_NOT_
FOUND

The trace information was not
found in the configuration data.

-16034 0xFFFFC15E NMAS_E_PASSWORD_UPPER_FIRST The first character of the password
does not allow uppercase
characters.

-16035 0xFFFFC15
C

NMAS_E_PASSWORD_UPPER_LAST The last character of the password
does not allow uppercase
characters.

-16036 0xFFFFC169 NMAS_E_LOGIN_FAILED_ERROR_
DISPLAYED

Displays “NMAS internal error.”

-16037 0xFFFFC15B NMAS_E_PASSWORD_LOWER_LAST The last character of the password
does not allow lowercase
characters.

-16038 0xFFFFC15A NMAS_E_PASSWORD_EXTENDED_
FIRST

The first character of the password
does not allow extended
characters.

-16039 0xFFFFC159 NMAS_E_PASSWORD_EXTENDED_
LAST

The last character of the password
does not allow extended
characters.

-16040 0xFFFFC158 NMAS_E_PASSWORD_EXTENDED_MIN The password does not contain
the minimum number of extended
characters.

-16041 0xFFFFC157 NMAS_E_PASSWORD_EXTENDED_MA
X

Password contains more than the
maximum number of extended
characters.

-16042 0xFFFFC156 NMAS_E_PASSWORD_UPPER_
DISALLOWED

The password does not allow
uppercase characters.

-16043 0xFFFFC155 NMAS_E_PASSWORD_LOWER_
DISALLOWED

The password does not allow
lowercase characters.

Decim
al
Value

Hexadecima
l Value

Name Description
NMAS Error Codes 181

-16044 0xFFFFC154 NMAS_E_USER_CHALLENGES_
NOT_SYNCED

User challenge questions do not
match the challenge questions in
the challenge set associated with
the user.

-16045 0xFFFFC153 NMAS_E_INVALID_USER_CHALLENGE_
SET

The user challenge questions are
not formatted properly.

-16046 0xFFFFC152 NMAS_E_CFG_INFO_EXISTS ***

-16047 0xFFFFC151 NMAS_E_CFG_INFO_NOT_FOUND ***

-16048 0xFFFFC150 NMAS_E_ENTRY_EXISTS This may be returned from
MAFDS_ModifyEntry (page 100).
It indicates that the user either 1)
tried to add a duplicate value to a
multiple-valued attribute or 2) tried
to add multiple values to single
valued attribute.

-16049 0xFFFFC14F NMAS_E_ENTRY_ATTRIBUTE_NOT_FO
UND

The requested attribute does not
exist on the specified object.

-16050 0xFFFFC14E NMAS_E_NO_MORE_ENTRY_ATTRIBUT
ES

All of the attributes values have
been returned to the calling
routine.

-16051 0xFFFFC14
D

NMAS_E_UNKNOWN_IDENTITY The specified connection does not
have a user identity.

 -16052 0xFFFFC14
C

 NMAS_E_ENTRY_NOT_FOUND The specified object does not
exist.

-16053 0xFFFFC14B NMAS_E_ATTRIBUTE_EXISTS The object already has the
specified attribute value or the
attribute can not have multiple
values.

-16054 0xFFFFC14A NMAS_E_AUDIT_REQUIRED NMAS Auditing is required but is
not configured or installed
correctly.

-16055 0xFFFFC149 NMAS_E_PASSWORD_AD2K8_COMPLE
X_VIOLATION

The password change or set
request failed because the
password violates the complexity
rules of the assigned Microsoft
Server 2008-format password
policy.

-16056 0xFFFFC148 NMAS_E_PASSWORD_RANDOM_FAILE
D

The password change or set
request failed because the NMAS
server could not generate a
random password conforming to
the rules of the assigned password
policy.

Decim
al
Value

Hexadecima
l Value

Name Description
182 NDK: Novell Modular Authentication Services

-16057 0xFFFFC147 NMAS_E_PASSWORD_NONALPHA_DIS
ALLOWED

The password change or set
request failed because the
password contains a non-
alphabetic character. The
assigned password policy does not
allow non-alphabetic characters.

-16058 0xFFFFC146 NMAS_E_PASSWORD_NONALPHA_MIN The password change or set
request failed because the
password does not contain the
minimum number of non-
alphabetic characters required by
the assigned password policy.

-16059 0xFFFFC145 NMAS_E_PASSWORD_NONALPHA_MA
X

The password change or set
request failed because the
password contains more than the
maximum number of non-
alphabetic characters allowed by
the assigned password policy.

Decim
al
Value

Hexadecima
l Value

Name Description
NMAS Error Codes 183

184 NDK: Novell Modular Authentication Services

B BInstalling Novell eDirectory

When you extend NMAS™ functionality on your applications, you should already have Novell®
eDirectory™ installed. If you do not already have Novell Linux Services (NLS) or eDirectory on your
Linux system, you can install it manually.

1 Download the latest version of eDirectory from eDirectory 8.8 SP5 Platform-Specific Downloads
 (http://download.novell.com/Download?buildid=Um8b-a_q0-g~).

1a Select the version of eDirectory you wish to install.

IMPORTANT: During this step, you must log in to your Novell account, which allows you
to access all of the secure Novell applications or databases to which you have entitlement
rights. If you do not have an account, create a new Novell Account here (https://secure-
www.novell.com/selfreg/jsp/createAccount.jsp).

1b For detailed installation assistance, see Novell eDirectory 8.8 (http://www.novell.com/
documentation/edir88/).

2 At the Linux command prompt, uncompress eDirectory by entering

tar -zxvf eDirectory_88SP5_Linux_<architecture type>.tar.gz

3 Change directories to install the directory by entering

cd Linux/setup./nds-install -c serverndsconfig new -t corp-tree -n o=novell-a

cn=admin.o=novell

IMPORTANT: To complete the installation, you need the license (.nfk) file.

4 Create the required NMAS objects in eDirectory by entering

nmasinst -i admin.novell corp-tree

5 Install ConsoleOne® by entering

cd ../ConsoleOne > ./c1-install
Installing Novell eDirectory 185

http://download.novell.com/Download?buildid=Um8b-a_q0-g~
http://download.novell.com/Download?buildid=Um8b-a_q0-g~
http://www.novell.com/documentation/edir88/
https://secure-www.novell.com/selfreg/jsp/createAccount.jsp

186 NDK: Novell Modular Authentication Services

C CDeprecated NMAS Functions

This section contains the following deprecated topics and functions that are no longer supported by
Novell®:

 Section C.1, “Client Application Login Functions,” on page 187

 Section C.2, “NMAS Transport API,” on page 190

 Section C.3, “Proxy Functions,” on page 196

 Section C.4, “Secure Workstation Login Method,” on page 213

C.1 Client Application Login Functions
The NMAS™ client application login functions were used by Windows applications to invoke the
NMAS client to log in or log in again. These functions provided a method to force users to log in or
log in again using a prescribed login sequence when starting an application:

 NMAS_DisconnectedLogin (page 188)

 NMAS_LegacyRelogin (page 189)

NMAS_DisconnectedLogin provided the ability to force a user to login using NMAS rather than
some other authentication method when disconnected. NMAS_LegacyRelogin used the default login
sequence of an application.

For example, when an application is using Single Sign-on to access a user’s Novell SecretStore™,
NMAS_LegacyRelogin (page 189) or NMAS_DisconnectedLogin (page 188) could be used to force a
user to log in again before the secrets (that is, ID, password, certificates, etc.) are extracted from Secret
Store and presented to the application. In essence, this provides a secondary login procedure to
enhance security when authenticating to a network or an application.

NOTE: The NMAS_DisconnectedLogin function is obsolete and is replaced with enhanced
disconnected login functionality included with the current NMAS NDK.
Deprecated NMAS Functions 187

NMAS_DisconnectedLogin

Starts the NMAS disconnected login process using the input login and user information.

Syntax

C

#include <sasflegy.h>

nint NMAS_DisconnectedLogin
(
 pnstr treeName
 pnstr subjectDN,
 pnvint8 preGatheredSecrets,
 pnstr reserved
);

Parameters

treeName

(IN) This local code page string specifies the tree to be used for disconnected login.

subjectDN

(IN) This local code page string specifies the full distinguished name (DN) of the user to be used
for disconnected login. The DN must be dot-delimited and typeless.

preGatheredSecrets

(IN) Optional password.

reserved

(IN) Must be null.

Remarks

This function is intended to be called by client applications to require a user to reauthenticate when
not connected to the eDirectory™ tree before the application is available to the user. No attempt is
made to access the network when calling this function. This function will become obsolete when new
enhanced disconnected login functionality is introduced in the future.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.
188 NDK: Novell Modular Authentication Services

NMAS_LegacyRelogin

Starts the NMAS login process using the input login and user information or the login and user
information used from previous logins.

Syntax

C

#include <sasflegy.h>

int NMAS_LegacyRelogin
(
 pnstr treeName
 pnstr subjectDN,
 pnstr requestedSequence,
 pnstr reserved1,
 pnstr reserved2
);

Parameters

treeName

(IN) This local code page string specifies the tree to be used to logged in again. If this parameter
is null and/or the subjectDN is null, the tree and user of the primary login session is used.

subjectDN

(IN) This local code page string specifies the full distinguished name (DN) of the user to be
logged in again. The DN must be dot-delimited and typeless. If this parameter is null and/or the
treeName is null, the tree and user of the primary login session is used.

requestedSequence

(IN) This local code page string specifies the login sequence to be used to logged in again. If this
parameter is null, this function uses the login sequence that was used for the first login or the
user’s default login sequence.

reserved1

Must be null.

reserved2

Must be null.

Remarks

This function is intended to be called by client applications to require a user log in again before the
application is available to the user. No new authenticated login sessions result from calling this
function. Only available with the Novell® Client32™.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.
Deprecated NMAS Functions 189

C.2 NMAS Transport API
The diagram in Figure C-1 represents how the NMAS Transport API interacts on the client and
server, respectively. The NMAS Transport API provides a means to invoke NMAS to perform a login
using the transport provided by the caller.

Figure C-1 High-Level Architecture of The NMAS Transport API

For example, LDAP can use NMAS to perform the login by invoking the NMAS Client and
supplying a transport callback routine and handle. The NMAS Client calls the transport callback to
send data to the server. The transport handler (“listener”) on the Server calls an NMAS Server with
the data sent by the NMAS Client.
190 NDK: Novell Modular Authentication Services

NMAS_ClientLogin

Called by the client transport to initiate the NMAS login.

Syntax

C

#include <nmasTransport.h>

int NMAS_ClientLogin
(
 NMAS_ClientLoginRequestInfo *rInfo,
 NMAS_ClientLoginTransportFcn transportFcn,
 int transportHandle,
 long features,
 long options,
 void *reserved1,
 void *reserved2
);

Parameters

rInfo

(IN) This is a structure that contains the user login request information (for example, user
distinguished name). See types NMAS_ClientLoginRequestInfo (page 192).

transportFcn

(IN) This is the transport call back routine which is used by the NMAS client to send data to the
server. See types NMAS_ClientLoginTransportFcn (page 192).

transportHandle

(IN) This is the transport-specific handle which is passed by the NMAS client as the first
parameter of the call back routine.

features

This is a flags parameter which is intended to be used to request login features. No feature flags
currently have been defined. Currently only defined feature flag specifies that the NMAS client
is disconnected from the NMAS server. The value for this feature is
NMAS_TRANSPORT_DISCONNECTED (8).

options

This flags parameter is intended to specify the behavior of the NMAS login session. Currently
the only defined option flag specifies that NMAS not perform any encryption of data that is
transported between the NMAS client and NMAS server. The value for this option flag is
NMAS_TRANS_PORT_OPTION_NO_CRYPTO (8).

reserved1

Must be null.

reserved2

Must be null.
Deprecated NMAS Functions 191

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_MessageHandler (page 194)

NMAS_ClientLoginRequestInfo

Contains the user’s login request information that is passed to NMAS_ClientLogin (page 191).

#include <nmasTransport.h>

struct NMAS_ClientLoginRequestInfo
{
 unicode *userName;
 unicode *reqSequence;
 unicode *treeName;
 unicode *reqClearance;
 unicode *password
;}

userName

The full distinguished name (typeless dot-delimited) of the user.

reqSequence

(Optional) The optional login sequence field that is requested by the user.

treeName

(Optional) The target NDS tree of the login session. This field is optional.

reqClearance

(Optional) The Unicode representation of the session clearance requested by the user. This field
is optional.

password

(Optional) The Unicode representation of the user’s password. This field is optional.

NMAS_ClientLoginTransportFcn

This is the definition of the transport callback routine which is passed to NMAS_ClientLogin
(page 191).

#include <nmasTransport.h>

int NMAS_ClientLoginTransportFcn
(
 int handle,
 void *instructionBuf,
 size_t instructionLen,
 void *resultBuf,
 size_t *resultLen;)

handle

(IN) The transport specific handle which is passed to NMAS_PutLoginConfig (page 115).
192 NDK: Novell Modular Authentication Services

instructionBuf

(IN) Contains the request that is to be sent to the NMAS Server.

instructionLen

(IN) The number of bytes contained in instructionBuf.

resultBuf

(OUT) Contains the reply from the NMAS Server. Buffer must be large enough for any reply.
Needs a recommended size.

resultLen

The number of bytes contained in resultBuf.
Deprecated NMAS Functions 193

NMAS_MessageHandler

This function is called by the server side of the transport to process the NMAS client request and to
return the NMAS server reply.

Syntax

C

#include <nmasMsg.h>

NMASAPI NMAS_MessageHandler
(
 size_t inSize,
 char *inBuffer,
 size_t *outSize,
 char **outBuffer,
 nint32 *nmasHandle,
 nuint32 *status
);

Parameters

inSize

(IN) The number of bytes contained in inBuffer which was received from the NMAS Client.

inBuffer

(IN) contains the request received from the NMAS Client.

outSize

(OUT) The number of bytes contained in outBuffer.

outBuffer

(OUT) Contains the reply to be sent back to NMAS Client. Must be freed by calling
NMAS_FreeReply (page 196) after data is sent to client.

nmasID

(OUT) The NMAS identifier which can be used by the transport to make calls to other NMAS
functions such as NMAS_Authenticate (page 198) or NMAS_LocalAuthenticate (page 209).

status

(OUT) Indicates if the NMAS login session is continuing or finished.
194 NDK: Novell Modular Authentication Services

The following list shows the flag definitions:

Return Values

A non-zero value indicates that there was a fatal system error which caused the login session to abort.

See Also

NMAS_FreeReply (page 196)
NMAS_Authenticate (page 198)
NMAS_LocalAuthenticate (page 209)

FLAG VALUE

NMAS_TRANS_STATUS_CONT 0x0

NMAS_TRANS_STATUS_SUCCESS 0x1

NMAS_TRANS_STATUS_FAILED 0x2

NMAS_TRANS_STATUS_DONE 0x4

NMAS_TRANS_STATUS_FIRST 0x8
Deprecated NMAS Functions 195

NMAS_FreeReply

Called by the server side of the transport to free the reply buffer which is allocated and returned to
the caller of NMAS_MessageHandler (page 194).

Syntax

C

#include <nmasMsg.h>

int NMAS_FreeReply
(
 void *buffer
);

Parameters

buffer

(IN) The reply buffer which was allocated and returned by NMAS_MessageHandler (page 194).

Return Codes

None.

See Also

NMAS_MessageHandler (page 194)

C.3 Proxy Functions
The NMAS Proxy functions allow other services to use NMAS for authentication. The proxy client
must meet the minimum requirements to authenticate: it must provide a login sequence, subject
name, and a list of available login methods. NMAS_PutAttribute (page 211) is used to specify the
login sequence and user name, as well as other information that might be needed by a specific login
method.

The proxy client performs the MAF protocol using the NMAS_CanDo (page 200),
NMAS_InvokeMethod (page 208), and NMAS_WhatNext (page 212) functions.

When all methods have been invoked and have successfully verified credentials, use
NMAS_Authenticate (page 198) or NMAS_LocalAuthenticate (page 209) to create an authenticated
connection. This connection must be closed later using NMAS_Logout (page 210).

The following sample shows how to authenticate using the Proxy API set:
196 NDK: Novell Modular Authentication Services

ProxyLogin()
{
 int nmasID, mafHandle, int ndsContext=INVALID_NDS_CONTEXT;
 MethodIDsBuffer clientCanDo[2];
 MethodIDsBuffer doMethod;

 NWDSCreateContextHandle(&ndsContext);

// Create an NMAS handle. This context must be destroyed later// using
NMAS_DestroyContext.
NMAS_CreateContext(&nmasID);// Save the DN of the user to be logged
inNMAS_PutAttribute(nmasID, NMAS_AID_USERNAME,)// Save the name of the login
sequence
NMAS_PutAttribute(nmasID, NMAS_AID_REQUESTED_METHODS,);// Build an array of login
methods executed by clientmemset(clientCanDo, 0, sizeof(MethodIDsBuffer * 2));
clientCanDo[0].methodLen = 4;
clientCanDo[0].methodID[0] = 0x0000001;

// Login method ID number
clientCanDo[1].methodLen = 4;
clientCanDo[1].methodID[0] = 0x0000009;
// Login method ID number// Get the first method to invoke
NMAS_CanDo(nmasID,
1, // Number of methods in the clientCanDo array
clientCanDo,0, NULL, // Reserved
&doMethod, // Receives the first login method to invoke
&mafHandle); // Receives a MAF handlewhile (doMethod.methodID[0])
{ // Invoke the LCM and LSM for the method.
 NMAS_InvokeMethod(mafHandle, &doMethod);

 // Get the next method to invoke
 NMAS_WhatNext(nmasID, &doMethod, &mafHandle);
}// Create a connection. This connection must be closed later
// using NMAS_Logout.
NMAS_Authenticate(nmasID, mafHandle, INVALID_NDS_CONTEXT, ndsContext);
}

Deprecated NMAS Functions 197

NMAS_Authenticate

Authenticates the specified NDS eDirectory context. Call this routine after NMAS_MessageHandler
(page 194) returns a SUCCESS status and before a DONE status.

Syntax

#include <nmaspxy.h>

nint32 NMAS_Authenticate
(
 nint32 nmasHandle,
 nint32 mafHandle,
 nint reserved,
 nint ndsContext
);

Parameters

nmasHandle

(IN) The NMAS handle.

mafHandle

(IN) The MAF handle.

reserved

Must be INVALID.NDS.CONTEXT (-1).

ndsContext

(IN) Provides a DSAPI context.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_LocalAuthenticate (page 209)
NMAS_Logout (page 210)
198 NDK: Novell Modular Authentication Services

NMAS_AuthenticateConnection

Associates the input connection number (connID) with the identity logged in with the input
nmasHandle. Call this routine after NMAS_MessageHandler (page 194) returns a SUCCESS status and
before a DONE status.

Syntax

#include <nmaspxy.h>

nint32 NMAS_AuthenticateConnection
(
 nint32 nmasHandle,
 int connID
);

Parameters

nmasHandle

(IN) The NMAS handle.

connID

(IN) The eDirectory or Netware connection.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_Authenticate (page 198)
NMAS_LocalAuthenticate (page 209)
Deprecated NMAS Functions 199

NMAS_CanDo

Specifies the login methods the proxy client can perform. Returns the first method to be invoked.
Invokes the LSM of the first method.

Syntax

#include <nmaspxy.h>

 nint32 NMAS_CanDo
(
 nint32 nmasHandle,
 nint32 numMethods,
 MethodIDsBuffer *canDoMethods,
 size_t reserved1,
 void reserved2,
 MethodIDsBuffer *doMethod,
 nint32 *mafHandle
);

Parameters

nmasHandle

(IN) The NMAS handle.

numMethods

(IN) The number of entries in the canDoMethods buffer.

canDoMethods

(IN) Array of Method IDs that the proxy client can do.

reserved1

Reserved. Must be null.

reserved2

Reserved. Must be null.

doMethod

(OUT) Pointer to a MethodIDsBuffer structure. Upon success, this parameter contains the Method
ID of the login method to be invoked.

mafHandle

(OUT) The MAF handle for use with NMAS_InvokeMethod (page 208) and NMAS_WhatNext
(page 212).

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_PutAttribute (page 211)
NMAS_InvokeMethod (page 208)
200 NDK: Novell Modular Authentication Services

NMAS_WhatNext (page 212)
Deprecated NMAS Functions 201

NMAS_CreateContext

Creates an NMAS context handle.

Syntax

#include <nmaspxy.h>

 nint32 NMAS_CreateContext
(
 nint32 *nmasHandle
);

Parameters

nmasHandle

(OUT) Receives a pointer to the NMAS context handle.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_DestroyContext (page 203)
202 NDK: Novell Modular Authentication Services

NMAS_DestroyContext

Destroys an NMAS context handle.

Syntax

#include <nmaspxy.h>

nint32 NMAS_DestroyContext
(
 nint32 nmasHandle
);

Parameters

nmasHandle

(IN) The NMAS handle to be destroyed.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_CreateContext (page 202)
Deprecated NMAS Functions 203

NMAS_FindMethods

Returns the ordered list of Method IDs that define the input login sequence.

Syntax

#include <nmaspxy.h>

nint32 NMAS_FindMethods
(
 unicode *seqName,
 nint32 *bufferLen,
 MethodIDsBuffer *methods,
 nint32 *methodCnt
);

Parameters

seqName

(IN) Name of a login sequence.

bufferLen

(IN) Size in bytes of the methods.

methods

(IN/OUT) Ordered list of methods that defines the login sequence.

methodCnt

(OUT) Number of Method IDs that are contained in methods.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_GetAvailableMethods (page 207)
NMAS_FindLoginSequences (page 205)
204 NDK: Novell Modular Authentication Services

NMAS_FindLoginSequences

Iteratively returns the login sequence names that can be used with the specified list of login methods.

Syntax

#include <nmaspxy.h>

nint32 NMAS_FindLoginSequences
(
 nint32 nmasHandle,
 nint32 *iter,
 nint32 numMethods,
 MethodIDsBuffer *methods,
 nint32 bufferLenInBytes,
 void *seqName
);

Parameters

nmasHandle

(IN) The NMAS handle.

iter

(IN/OUT) On the first iteration, the input value must equal -1 The output value is -1 when no
more login sequences can be found. (See Remarks.)

numMethods

(IN) The number of entries in the Methods buffer.

methods

(IN) List of desired methods.

bufferLenInBytes

(IN) Length in bytes of sequence name.

seqName

(IN/OUT) Name of login sequence.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

Only the names of the login sequences that contain a subset of the input list of methods is returned.
To determine list of methods in a login sequence use the NMAS_FindMethods function.

See Also

NMAS_FindMethods (page 204)
NMAS_GetAvailableMethods (page 207)
Deprecated NMAS Functions 205

NMAS_GetAttribute

Retrieves data placed in the attribute store using NMAS_PutAttribute (page 211).

Syntax

#include <nmaspxy.h>

 nint32 NMAS_GetAttribute
(
 nint32 nmasHandle,
 nint32 aid,
 void *reserved,
 nint32 attributeLenInBytes,
 void *attributeValue
);

Parameters

nmasHandle

(IN) The NMAS handle.

aid

(IN) The type of attribute to be retrieved. See Section 4.2, “NMAS Attribute IDs,” on page 47 for
a listing of valid values.

reserved

Reserved. Must be null.

attributeLenInBytes

(OUT) The length of the buffer pointed to by attributeValue.

attributeValue

(OUT) The retrieved value.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_PutAttribute (page 211)
206 NDK: Novell Modular Authentication Services

NMAS_GetAvailableMethods

Provides a list of proxy Login Client Modules (LCMs) that are available on the server.

Syntax

#include <nmaspxy.h>

nint32 NMAS_GetAvailableMethods
(
 nint32 *bufferLen,
 MethodIDsBuffer *methods,
 nint32 *methodCnt
);

Parameters

bufferLen

(IN) Size in bytes of the methods.

methods

(IN/OUT) Ordered list of Method IDs of proxy LCMs available on the server.

methodCnt

(OUT) Number of Method IDs in methods.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_FindMethods (page 204)
NMAS_FindLoginSequences (page 205)
Deprecated NMAS Functions 207

NMAS_InvokeMethod

Executes a login method. The proxy LCM for the selected method is invoked and this call blocks until
the login method is complete. A call to this function should be followed by a call to
NMAS_WhatNext (page 212).

Syntax

#include <nmaspxy.h>

nint32 NMAS_InvokeMethod
(
 nint32 mafHandle,
 MethodIDsBuffer *doMethod
);

Parameters

mafHandle

(IN) The MAF handle returned by NMAS_CanDo or NMAS_WhatNext.

doMethod

(IN) The login method to be invoked, returned by NMAS_CanDo or NMAS_WhatNext.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

The method’s Login Server Module is invoked by NMAS_CanDo (page 200) or NMAS_WhatNext
(page 212).

See Also

NMAS_CanDo (page 200)
NMAS_WhatNext (page 212)
208 NDK: Novell Modular Authentication Services

NMAS_LocalAuthenticate

Allocates and authenticates an NCP connection for use on the local system only. The connection is set
as the connection for the specified NDS eDirectory context. The connection must be closed with
NMAS_Logout. Call this routine after NMAS_MessageHandler (page 194) returns a SUCCESS status
and before a DONE status.

Syntax

#include <nmaspxy.h>

nint32 NMAS_LocalAuthenticate
(
 nint32 nmasHandle,
 nint32 mafHandle,
 nint reserved,
 nint ndsContext
);

Parameters

nmasHandle

(IN) The NMAS handle.

mafHandle

(IN) The MAF handle.

reserved

Must be INVALID.NDS.CONTEXT (-1).

ndsContext

(IN) Provides a DSAPI context.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_Authenticate (page 198)
NMAS_Logout (page 210)
Deprecated NMAS Functions 209

NMAS_Logout

Logs out the specified NDS eDirectory Context and closes the connection created with
NMAS_LocalAuthenticate.

Syntax

#include <nmaspxy.h>

nint32 NMAS_Logout
(
 nint32 nmasHandle,
 nint reserved,
 nint ndsContext
);

Parameters

nmasHandle

(IN) The NMAS handle.

reserved

(IN) Must be INVALID.NDS.CONTEXT (-1).

ndsContext

(IN) Provides a DSAPI context.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_LocalAuthenticate (page 209)
NMAS_Authenticate (page 198)
210 NDK: Novell Modular Authentication Services

NMAS_PutAttribute

Saves data in the attribute store in the directory. StoreData placed in the attribute store can be
retrieved later using NMAS_GetAttribute.

Syntax

#include <nmaspxy.h>

 nint32 NMAS_PutAttribute
(
 nint32 nmasHandle,
 nint32 aid,
 void *reserved,
 nint32 attributeLenInBytes,
 void *attributeValue
);

Parameters

nmasHandle

(IN) The NMAS handle.

aid

(IN) The type of attribute to be stored.

reserved

Reserved. Must be null.

attributeLenInBytes

(IN) The length of the buffer pointed to by attributeValue.

attributeValue

(IN) The data to be stored.

Remarks

The aid parameter specifies the type of attribute to be stored. The attributeValue parameter should
point to a buffer containing the data.

The values the aid parameter are defined in maf.h (see the complete list, Section 4.2, “NMAS Attribute
IDs,” on page 47.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

See Also

NMAS_GetAttribute (page 206)
Deprecated NMAS Functions 211

NMAS_WhatNext

Invokes the LSM of the next method in the login sequence (if any) and returns the Method ID.

Syntax

#include <nmaspxy.h>

nint32 NMAS_WhatNext
(
 nint32 nmasHandle,
 MethodIDsBuffer *doMethods,
 nint32 *mh
);

Parameters

nmasHandle

(IN) The NMAS handle.

doMethods

(OUT) Pointer to a Method ID’s buffer structure that contains the Method ID of the login method
to be invoked.

mafHandle

(IN/OUT) The MAF handle.

Return Codes

Returns NMAS_E_SUCCESS (0) if successful or a non-zero NMAS Error Code if not successful.

Remarks

If this call is successful and the entire methodId member of doMethods is zero, then there are no more
methods to invoke.

If the login sequence indicates that another method is to be used, this function invokes the next
method’s Login Server Module.

See Also

NMAS_CanDo (page 200)
NMAS_InvokeMethod (page 208)
NMAS_Authenticate (page 198)
NMAS_LocalAuthenticate (page 209)
212 NDK: Novell Modular Authentication Services

C.4 Secure Workstation Login Method
NMAS 2.1 ships with a generic smart card login method called Universal Smart Card. This method
uses a standardized cryptographic token interface (PKCS#11) to read an X.509 certificate from a smart
card, then verifies the certificate against a trusted root certificate that has been imported into
eDirectory.

The secure workstation login method contains a policy that specifies (using a a method identification
number) which device it should monitor for removal events. The policy also specifies other
information, such as a time out for user inactivity and the “lock action” that should be taken when a
login device is removed or when the inactivity time out expires.

C.4.1 Device Monitor Plug-in

The NMAS 2.1 version of Universal Smart Card includes a secure workstation plug-in that can detect
when smart cards are removed and subsequently log off users from the workstation.

If you develop your own secure workstation plug-in, you need to compile a DLL that exports three
functions. For a full explanation about these functions, see “Implementing A Secure Workstation
Plug-in” on page 214.

The DLL you compile should monitor the login device you specify from the time
StartDeviceMonitorPlugin (page 166) is called until StopDeviceMonitorPlugin (page 167). However,
the Secure Workstation Policy determines whether your StartDeviceRemovalPlugin function is called
at all. (See Step 1 on page 214.)

To implement your own Secure Workstation plug-in, see “Implementing A Secure Workstation Plug-
in” on page 214. Also see the sample code for implementing a user ID plug-in (../../../samplecode/
nmas_sample/nmas_client/idplugin.c.html).

C.4.2 Secure Workstation Policies

The Secure Workstation method uses two different policies:

 “Local Workstation Policy” on page 213

 “eDirectory Policy” on page 214

Local Workstation Policy

The local workstation policy is stored in an access control list-protected key in the registry. Secure
Workstation enforces this policy as long as the service is running. No Client32 login is required to put
the local workstation policy into effect. Secure Workstation starts enforcing this policy as soon as it
gets a “Shell Start Event” from Winlogon.
Deprecated NMAS Functions 213

../../../samplecode/nmas_sample/nmas_client/idplugin.c.html

eDirectory Policy

The eDirectory policy is configured using ConsoleOne and delivered to the workstation using the
Secure Workstation Post-Login method (PLM). A separate policy can be configured for each login
sequence that contains the Secure Workstation PLM.

When a user logs in using the Secure Workstation PLM, the PLM delivers the eDirectory policy to the
Secure Workstation Service. The service reads the local workstation policy from the registry, then
creates an effective policy that contains the most secure settings for each policy. The effective policy is
enforced until the user logs out of Windows or another user logs in to eDirectory using the PLM.

Implementing A Secure Workstation Plug-in

Use the following procedure to implement your own secure workstation plug-in:

1 Compile a DLL that exports the following functions:

 RegisterDeviceMonitorPlugin (page 165)

 StartDeviceMonitorPlugin (page 166)

 StopDeviceMonitorPlugin (page 167)

 LPFN_DeviceRemoved (page 160)

TIP: You can include this DLL when you create your NMAS LCM DLL. For more information,
see Section 3.5.2, “Building a Windows LCM,” on page 35.

2 Register your DLL with the Secure Workstation service by creating a registry key under the
following key:

While it does not matter what you call you registry key, this key should contain the following
values:

Because your DLL is loaded by a service running as the LocalSystem account, you should set a
restrictive access control list (ACL) on your registry key. An ACL that gives full control to the
system account and read-only access to the users group is acceptable.

NOTE: While the Secure Workstation method supports Terminal Services remote clients, the
device removal functionality does not. In this release, the Secure Workstation service calls your
DLL only for the user on the local console. Device removal support for Terminal Services clients
might be added in a future release.

Key Value Type Description

HKLM\SOFTWARE\Novell\NMAS\Method
Data\Secure Workstation\Registered Methods

MethodID DWO
RD

The NMAS method ID
number for your method.

HKLM\SOFTWARE\Novell\NMAS\Method
Data\Secure Workstation\Registered Methods

Removal
DLL

String The path and name of the
DLL that implements the
Secure Workstation APIs
listed above.
214 NDK: Novell Modular Authentication Services

D DRevision History

The following table summarizes changes made to NMAS documentation:

April 16, 2012 Added error codes 16055, -16056, -16057, -16058, and -16059 to the list of
NMAS error codes in Appendix A, “NMAS Error Codes,” on page 173.

October 14, 2008 Modified information in “Config Store/Secret Store Attributes” on page 22.

May 27, 2008 Added the methodID information to the following functions:
nmasldap_put_login_config, nmasldap_delete_login_config,
nmasldap_get_login_config, nmasldap_put_login_secret,
nmasldap_delete_login_secret.

 Added or revised the following APIs: nmasldap_get_password_status,
nmasldap_policy_refresh, nmasldap_check_login_policy,
nmasldap_set_address_policy, nmasldap_get_user_random_password,
nmasldap_get_random_password.

 Added information stating that the LCM and LSM need to be threadsafe.

October 17, 2007 Added the following NMAS functions:

 NMAS_Login (page 113)

 Reorganized some of the MAF Password Functions (page 52) concepts to
improve clarity.

 Updated “Placement of Files” on page 30 to document the proper directory
structure for LCM, LSM, and license files.

 Updated the directory structure in Section 3.5.3, “Building a Linux LCM,” on
page 35.

 Changed Section 4.3.8, “MAF Data Store Functions***,” on page 52 from Early
Access to Supported Status.

 Updated the NMAS Password Manager Java classes to document the
constructor that take a JLdapTransport object. See Chapter 9, “NMAS Javadoc
References,” on page 171.

 Updated Appendix A, “NMAS Error Codes,” on page 173.

February 28,
2007

 Added Section 2.2.1, “NMAS Login Method Security Considerations,” on
page 16.

 Added the function, MAF_GetPasswordEx (page 63).

October 11, 2006 Corrected the RestartPluginOnFailure registry setting.

 Fixed broken links.
Revision History 215

June 21, 2006 Updated nmasext.h to enable C++ functionality.

 Documented the “Configuration Store Functions” on page 107:

 nmasldap_delete_login_config (page 119)

 nmasldap_get_login_config (page 123)

 nmasldap_put_login_config (page 125)

 Documented the “SecretStore Management Functions” on page 107:

 nmasldap_delete_login_secret (page 121)

 nmasldap_put_login_secret (page 127)

 Revised or added the following NMAS 3.1 Leading Edge functions:

 MAFDS_ATTRIBUTE (page 87)

 MAFDS_FreeContainerEntries (page 89)

 MAFDS_FreeModValues (page 91)

 MAFDS_FreeValues (page 92)

 MAFDS_FreeValueData (page 93)

 MAFDS_GetParentContainer (page 94)

 MAFDS_GetPartitionRootContainer (page 95)

 MAFDS_GetValueData (page 96)

 MAFDS_InsertModValue (page 97)

 MAFDS_ListContainerEntries (page 99)

 MAFDS_ModifyEntry (page 100)

 MAFDS_ReadAttributeValues (page 102)

 MAFDS_ReadInheritedAttributeValues (page 104)

 Linked NMAS Javadoc classes directly from the on line NMAS developer
documentation.

 Corrected some Error Code definitions.
216 NDK: Novell Modular Authentication Services

March 1, 2006 Updated Novell documentation templates and fixed broken links.

 Corrected the objectDN parameter documentation in all of the NMAS LDAP
functions to reflect that it is an LDAP DN.

 Added MAF_MemMalloc (page 69), MAF_MemMalloc (page 69), and
MAF_MemFree (page 68) to replace MAF_Malloc (obsolete 3/1/2006) (page 67)
and MAF_Free (obsolete 3/1/2006) (page 58).

 Added new MAF_LogEvent (page 65) function to add logging functionality in
NMAS 3.0 or later.

 Updated “NMAS Error Codes” on page 173.

 Added theSection 4.3.8, “MAF Data Store Functions***,” on page 52:

 MAFDS_CreateContext (page 88)

 MAFDS_FreeContext (page 90)

 MAFDS_GetValueData (page 96)

 MAFDS_InsertModValue (page 97)

 MAFDS_ListContainerEntries (page 99)

 MAFDS_ModifyEntry (page 100)

 MAFDS_ReadAttributeValues (page 102)

 MAFDS_VALUE_DATA (page 106)

October 5, 2005 Transitioned to revised Novell documentation standards.

 Revised Chapter 5, “Method Management Functions,” on page 107 and
Chapter 7, “Password Management Functions,” on page 135 to include new
universal password management Java methods.

June 1, 2005 Totally revised and reorganized the NMAS NDK to help facilitate implementation
of the new Java interface.

 Added NMAS NDK Java documentation (../api/index.html) for NMAS login
interfaces.

 Expanded Error Code definitions to accommodate new NMAS functionality.

 Added new NMAS Sample Code (http://developer.novell.com/ndk/doc/
samplecode/nmas_sample/index.htm) and enhanced existing samples to help
demonstrate NMAS method development.

 Deleted the NMAS_ActivateLockLogout function, which was deprecated in
2002.

March 2, 2005 Created a new appendix to document the Deprecated NMAS Functions
(page 187).

 Added the Disconnected Mode concept documentation, which was never
supported in the NMAS SDK.

 Made technical corrections and fixed broken links.

 Deleted unsupported references to SASL Authentication as a method for adding
authentication support to connection-based protocols.
Revision History 217

../api/index.html
http://developer.novell.com/ndk/doc/samplecode/nmas_sample/index.htm

October 6, 2004 Added documentation to support new LDAP password management functions:
NMAS Password Management Java Classes (page 135)
Password Management Requirements (page 136)
Simple Password Management (page 136)
Universal Password Management (page 137)
NMAS LDAP C Password Management Functions (page 138)

 Added the following new Sample Code (http://developer.novell.com/ndk/doc/
samplecode/nmas_sample/index.htm) files:
Universal Password
Simple Password
Login Configuration
Login Secret

 Made technical corrections and fixed broken links.

July 23, 2004 Clarified when these routines can be called:
NMAS_Authenticate (page 198)
NMAS_AuthenticateConnection (page 199)
NMAS_LocalAuthenticate (page 209)

June 9, 2004 Updated libraries and software to incorporate bug fixes to version 2.33.

 Made minor modifications and fixed broken links.

February 18,
2004

 Fixed a number of bugs in software and documentation.

 Added the following flags to NMAS Attribute IDs (page 47):
NMAS_AID_OPTIONS, NMAS_AID_FEATURES,
NMAS_AID_PWD_WARNING, and NMAS_AID_VERIFY_ONLY.

June 2003 Updated NMAS Error Codes (page 173).

 Added the following Multiple Authentication Framework Functions:
MAF_AllowPasswordSet (page 55)
MAF_GetPassword (page 61)
MAF_Free (obsolete 3/1/2006) (page 58)
MAF_SetPassword (page 75)
MAF_Trace (page 76)
MAF_TraceEnabled (page 77)
MAF_TraceOnError (page 78)

 Updated NMAS Attribute IDs (page 47).

 Edited entire document for style.

March 2003 Added new references to “SASL Authentication Support” as a method for adding
authentication support to connection-based protocols.

 Added new section, Implementing A Secure Workstation Plug-in (page 214).

 Revised Client Application Login Functions (page 187) to explain how NMAS
client application login functions are used by Windows applications.

 Added new NMAS_LOGIN_IDENTITY (page 159) function to replace
NMAS_GetUserName (obsolete 3/03) (page 168). Consequently, made major
revisions to the entire Identification Method Function chapter.

September 2002 Revised Client Application Login Functions section to explain how NMAS client
application login functions are used by Windows applications.

June 2002 Mid-release update of documentation of proxy functions to correlate with changes
made to the NMAS software and sample code, which was previously submitted for the
May 2002 NDK release.
218 NDK: Novell Modular Authentication Services

http://developer.novell.com/ndk/doc/samplecode/nmas_sample/index.htm

May 2002 Updated NMAS Error Codes (page 173) section, as well as signing code and login
method sample code examples.

February 2002 Added NMAS Error Codes (page 173) section and added new login Identification
Method chapter.

Enhanced Sample Code and corrected several documentation errors.

October 2001 Clarified a number of concepts and added the following new Proxy Functions:

 NMAS_FindLoginSequences (page 205).

 NMAS_FindMethods (page 204).

 NMAS_GetAvailableMethods (page 207).

 NMAS_AuthenticateConnection (page 199).

June 2001 Added Chapter 5, “Method Management Functions,” on page 107.

Revised Section 4.2, “NMAS Attribute IDs,” on page 47.

Edited and enhanced Sample Code.

February 2001 Added the Disconnected Mode concept.

Added NMAS_AID_DISCONNECTED_FLAG to the list of constants that can be
passed as a parameter in the MAF_GetAttribute (page 59) function.

Revised the Return Codes sections of the following functions to explain that they will
return NMAS_E_NOT_SUPPORTED while in disconnected mode: MAF_Read
(page 73), MAF_XRead (page 82), MAF_Write (page 79), MAF_XWrite (page 84),
MAF_WriteRead (page 80), MAF_XWriteRead (page 85).

Added nmasapi.h to the list of files needed in the Building a Windows LCM (page 35)
and Tasks for Writing a Login Method (page 23) tasks.

September 2000 Added requirements for writing Login Server Methods and Login Client Methods for
Windows NT server.

See Building a Windows LCM (page 35) and Steps for Signing an LSM (page 26).

May 2000 Added Glossary chapter and linked definitions within the documentation.

Updated Multiple Authentication Framework Functions (page 45), Method
Management Functions (page 107), and Proxy Functions (page 196) reference
information.
Revision History 219

220 NDK: Novell Modular Authentication Services

Glossary

Authentication Store. Various eDirectory™ class attributes where secret authentication information
is stored. These stores can be class attributes of the Login Method object or User objects.

biometric. Biological measurements of the eyes, voice, fingerprints, and face used for logging in and
authenticating to the network.

For more information, see Understanding Authentication Methods (http://www.novell.com/
documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html).

clear text password. Passwords that have not been encrypted. In contrast, ciphertext is data that has
been encrypted.

configuration data. Data that can be stored and retrieved through the Method Management
Functions. In addition, the MAF_GetAttribute function of the Multiple Authentication Framework
Functions can read this data to get the value of an attribute associated with the current login session.
The MAF_PutAttribute can store/delete this data.

Because the application can store and retrieve any values, configuration data is encrypted and
secured within eDirectory. The configuration data storage area is defined as a multiple value
attribute that can be associated with any user object, Login Method object, or Login Device Object
within eDirectory.

Directory Services Trace. DSTrace. A troubleshooting aid to help debug problems with eDirectory
and projects that utilize Novell® Directory Services (NDS®). For more information to understand or
implement DSTrace, see the following references: How to Use DSTrace (http://support.novell.com/
cgi-bin/search/searchtid.cgi?/2908733.htm), More On Using the DSTRACE Command (http://
developer.novell.com/research/sections/netmanage/dirprimer/2001/septembe/spv.htm), or Looking
Into the DSTrace Options (http://developer.novell.com/research/sections/netmanage/dirprimer/2001/
august/spv.htm).

eDirectory. A Novell distributed, replicated naming service that maintains information about and
provides access to every resource on the network. eDirectory tightly integrates Novell Security
Services for e-commerce (PKI, cryptography, and authentication services), allowing developers to
build applications that can be accessed and managed across the entire network through explicit
policies.

GA. Graded Authentication. A module that controls access to information based on how a user has
authenticated to a system. GA associates varying clearances to connections on the basis of network
policy, such as the authentication protocols and methods used, the properties of the workstation, or
the requested capabilities.

For more information, see Understanding Authentication Methods (http://www.novell.com/
documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html)

Grade. The login properties of a login method. Currently, biometric, password, token, and logged (or
any combination) of grades are supported. See Login Method Overview.

LCM. Login Client Module. A client-side component of a login method. The LCM is essentially a
program running on the workstation that interacts with the LSM. The LCM and LSM transmit login
credentials using the Multiple Authentication Framework Functions. See Building an NMAS LCM.
Glossary 221

http://www.novell.com/documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html
http://support.novell.com/cgi-bin/search/searchtid.cgi?/2908733.htm
http://developer.novell.com/research/sections/netmanage/dirprimer/2001/septembe/spv.htm
http://developer.novell.com/research/sections/netmanage/dirprimer/2001/august/spv.htm
http://developer.novell.com/research/sections/netmanage/dirprimer/2001/august/spv.htm
http://www.novell.com/documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html

LDAP. Lightweight Directory Access Protocol. An X.500-related Open Systems Interconnection (OSI)
protocol that clients can use to read and write directory information. LDAP is used to publish
directory information.The directory features available to LDAP clients are dependent upon the
features built into the LDAP server and the LDAP client; some clients have the ability to read and
write data, others can only read directory data.

Login Device Object. Object contained within a Login Method object. An LD is neither managed nor
created by NMAS. If used, LD’s are created and managed by the MMG (Method Management
Graphical Interface).

login method. Plug-in modules for the NMAS™ framework. Login methods are used to identify a
user to eDirectory for authentication. A login method includes a Method Management Graphical
Interface (MMG), a Login Client Module (LCM), and a Login Server Module (LSM).

For more information, see Understanding Authentication Methods (http://www.novell.com/
documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html)

Login Method container. An eDirectory object that is contained in the Security container at the tree
root. The login method container class contains a Login Method object for each login method.

The Post Login Method container is contained in the Security container. Post Login Method objects
are contained in the Post Login Method container. The Login Policy object is contained in the Security
container. See “Authorized Login Method Container (LMC)” on page 20.

Login Method object. Object contained in the Login Method container (see Authentication Store).
Every login method requires a unique Login Method object.

Login Secret Data. Secret user authentication data that can only be written through the MMG
(“Method Management Functions” on page 107) or with the MAF_PutAttribute function. However,
secret data can only be read by the LSM through the MAF_GetAttribute function.

Secret Data is secured with an authentication strength encryption. The secret data storage area is
defined as a multiple value attribute that is associated with any User object, Login Method object, or
Login Device Object within NDS.

login sequence. An ordered list of login and post login methods. Login sequences are stored in the
Login Policy object. There are two types of login sequences: AND and OR. For an AND sequence to
be successful, all login methods must validate the user. For an OR sequence to be successful, only one
of the login methods must validate the user. In either, all post login methods must complete
successfully.

LSM. Login Server Module. The server-side component of a login method. The LSM is invoked by
the NMAS Server Manager. The LSM works with the LCM to transmit login credentials using the
Multiple Authentication Framework Functions in a client-server model. For more information, see
Section 3.1, “Building an NMAS Login Method,” on page 23.

MAF. Multiple Authentication Framework Login Protocol. A protocol used for communication
between the LCM and the LSM, which establishes login credentials in NMAS. For more information,
see the Multiple Authentication Framework Functions and the Login Method Overview.

message digest. A data string distilled from the contents of a text message, created using a one-way
hash function. Encrypting a message digest with a private key creates a digital signature, which is an
electronic means of authentication.
222 NDK: Novell Modular Authentication Services

http://www.novell.com/documentation/lg/usfwnt3/docui/index.html#../fwcn_enu/data/hcjh3vxj.html

MMG. Method Management Graphical Interface. Java snap-in application designed to operate
within the Novell ConsoleOne® management framework. An MMG snap-in application for a login
method lets the administrator set up login parameters and manage the credential data that is stored
in the Authentication Store.

NMAS provides the Method Management Functions that allow the MMG to access the
Authentication Store. See “Method Management Functions” on page 107.

NICI. Novell International Cryptography Infrastructure. A policy-based architecture, providing
enforced key usage and key archiving based on dynamically loadable policies. The application of
NICI is independent of, and yet controlled by, the internal governing policies. This means that
restrictions on the use of cryptography are transparent to the application developer.

NICI is a modular architecture, supporting replaceable cryptographic engines to provide for special
cryptographic needs, both present and future. Using NICI, developers receive the benefits of flexible
and current technologies without modifying their software products.

NMAS. Novell Modular Authentication Services. A flexible and expandable login framework that
provides developers the ability to integrate multiple authentication services using NICI into
eDirectory systems.

NMAS works with the Graded Authentication (GA) capability first shipped with NetWare® 5.x,
providing a common point of administration for all login methods and policies through NDS®.These
login methods are used to identify a user to eDirectory. A complete login method includes a Method
Management Graphical Interface (MMG), a Login Client Module (LCM), and a Login Server Module
(LSM).

NMAS Client Manager. An interface for other applications’ transports to perform login sessions (see
“Method Management Functions” on page 107). NetWare Client32™ invokes the NMAS Client
Manager after the login screen is completed.

The NMAS Client manager is responsible for creating an NMAS session for the current session,
initializing the NICI Client, establishing a session key, placing the login data in the Security Context
Manager as attributes that can be read by the LCM, invoking the login method, and returning the
status of Login/Authentication.

The NMAS Client manager also is responsible for obtaining the credentials used by the
Authentication Manager. The Login Manager implements the Multiple Authentication Framework
(MAF) login protocol: (1) determining the available Login Method object supported by the client, (2)
initiating the MAF protocol, (3) receiving the “DO” MAF commands, and (4) invoking the
appropriate LCM module(s).

Upon receipt of the “SUCCESS” MAF command, the Login Manager retrieves the credential
materials from the server and places them into the Authentication Store for use by the Authentication
Manager.

See NMAS Client Manager.

NMASMon. A NetWare NLM™ that provides a way to get trace information from NMAS, similar to
“Directory Services Trace” on page 221 for eDirectory. For more information, see Using NMASMON
(http://www.novell.com/documentation/lg/nmas21/index.html?page=/documentation/lg/nmas21/
admin/data/ahl2qgo.html).
Glossary 223

http://www.novell.com/documentation/lg/nmas21/index.html?page=/documentation/lg/nmas21/admin/data/ahl2qgo.html

NMAS Server Manager. A module that registers with the NCP™ provider to receive the NMAS
NCPs (number 94). The NMAS Server Manager is invoked when the NMAS module is loaded on the
server. It also provides an interface for other transports (for example, to transport NMAS messages
between the client and server). (See “Method Management Functions” on page 107).

Where application specific protocols are used for login and authentication, the NMAS Server
Manager provides an API set so that Proxy Services can be implemented (see Section C.3, “Proxy
Functions,” on page 196).

The NMAS Server Manager is responsible for creating an NMAS session for the current session,
receiving MAF requests for login and authentication, invoking the login method, and returning the
status of the login process.

See NMAS Server Manager.

Novell Certificate Server. An enterprise PKI solution that offers the ability to freely mint an
unlimited number of digital certificates for end users (for example, to enable secure e-mail or X.509
certificate-based authentication) and for other servers (for example, to enable SSL security). See
Novell Certificate Server (http://developer.novell.com/ndk/ncslib.htm).

OCX. A short name for OLE custom controls. Such control modules end with a.ocx extension.

PKI. Public Key Infrastructure. The PKI framework used to securely exchange information, using
certification authorities (CAs) and digital signatures to verify and authenticate the validity of persons
engaged in Internet, Intranet, and Extranet transactions. A reliable PKI system is necessary before
implementing a secure e-commerce strategy. Use the Novell Certificate Server Libraries for C (http://
developer.novell.com/ndk/ncslib.htm) to implement your own internal PKI system.

Post Login method. Methods that are invoked after login has been completed. Examples are screen
saver and change password. PLM has a Login Client Module (LCM), an Login Server Module (LSM),
and usually a Method Management Graphical Interface (MMG).

proxy services. NMAS Server provides Login and Authentication functionality for various services.
Some of the proposed proxy methods can include SSL, HTTP, RADIUS, and LDAP. The proxy
support is provided through Section C.2, “NMAS Transport API,” on page 190 that are exposed
through the NMAS Server Manager. These Proxy Functions allow the service to emulate the NMAS
Client so that it can work in conjunction with NMAS Server components.

SASL. Simple Authentication Security Layer. A method for adding authentication support to
connection-based protocols. To use this specification, a protocol includes a command for identifying
and authenticating a user to a server and for optionally negotiating a security layer for subsequent
protocol interactions. It is used with popular Internet protocols such as POP3, IMAP, SMTP, and
LDAP.

The LDAP v3 protocol uses the SASL to support pluggable authentication. This means that the LDAP
client and server can be configured to negotiate and use possibly nonstandard and/or customized
mechanisms for authentication, depending on the level of protection desired by the client and the
server. The LDAP v2 protocol does not support the SASL.

RADIUS. Remote Authentication Dial-In User Service. A Novell authentication service that enables
remote users to securely dial in to NetWare networks (version 5.1 or later) and access network
information and resources. When installed on a server, RADIUS can be configured as an integral part
of NMAS.
224 NDK: Novell Modular Authentication Services

http://developer.novell.com/ndk/ncslib.htm
http://developer.novell.com/ndk/ncslib.htm

smart card. An electronic card containing a built-in microprocessor and memory used for
authentication identification. To use a smart card with NMAS, you need a smart card reader and an
installed NMAS method built for that reader.

SSL. Secure Socket Layer. The set of rules governing the exchange of information between two
devices using a public key encryption system. SSL establishes and maintains secure communication
between SSL-enabled servers and clients across the Internet.

X.509 Certificates. The common standard used for creating digital certificates. However, companies
have implemented the X.509 standard in different ways, rendering some generated X.509 certificates
unreadable across software products from different companies. A widely-used specification for
digital certificates that has been a recommendation of the ITU since 1988. See X.509 Property Page
(http://www.novell.com/documentation/lg/nw5/docui/index.html#../ussecur/crndsenu/data/
h0000070.html).
Glossary 225

http://www.novell.com/documentation/lg/nw5/docui/index.html#../ussecur/crndsenu/data/h0000070.html

226 NDK: Novell Modular Authentication Services

	NDK: Novell Modular Authentication Services
	About This Guide
	1 Getting Started
	1.1 Development Overview
	1.1.1 Additional Information

	1.2 Selecting a Compiler

	2 NMAS Concepts
	2.1 NMAS Login Considerations
	2.2 Login Method Overview
	2.2.1 NMAS Login Method Security Considerations

	2.3 NMAS Client
	2.3.1 Login Dialog Box
	2.3.2 NMAS Client Manager
	2.3.3 NMAS on Linux

	2.4 NMAS Server
	2.4.1 NMAS Server Manager
	2.4.2 Authentication Store

	3 Tasks for Writing a Login Method
	3.1 Building an NMAS Login Method
	3.2 Generating a Method Signing Certificate Request
	3.2.1 Steps for Generating a Signing Key
	3.2.2 Steps for Signing an LSM
	3.2.3 Packaging an NMAS Method
	3.2.4 Novell Yes CertifiedTM Program

	3.3 Testing-Debugging Unsigned Login Methods
	3.3.1 Requirements for Building an LSM
	3.3.2 Building a Windows LSM
	3.3.3 Building a NetWare LSM
	3.3.4 Building a Linux LSM
	3.3.5 NMAS NDK Sample Code

	3.4 Installing the Clear Text Password Method
	3.5 Building an NMAS LCM
	3.5.1 Requirements for Building an LCM
	3.5.2 Building a Windows LCM
	3.5.3 Building a Linux LCM
	3.5.4 Building a Java LCM

	3.6 Enrolling a User with the Clear Text Password
	3.6.1 Using ConsoleOne on Windows
	3.6.2 Using Method Management APIs on Linux

	3.7 Testing Your NMAS Methods
	3.7.1 Testing on Windows with the Novell Client
	3.7.2 Testing the Linux LCM
	3.7.3 Testing the Java LCM

	4 Multiple Authentication Framework Functions
	4.1 MAF Programming Model
	4.2 NMAS Attribute IDs
	4.2.1 NMAS AID Options

	4.3 MAF C Functions
	4.3.1 MAF Attribute Functions
	4.3.2 MAF Login State Functions
	4.3.3 MAF Memory Functions
	4.3.4 MAF Password Functions
	4.3.5 MAF Trace Message Functions
	4.3.6 MAF Transport Functions
	4.3.7 MAF Event Log Function
	4.3.8 MAF Data Store Functions***

	4.4 MAF Java Functions
	4.4.1 Library Architecture
	4.4.2 NMAS Java LCM on Linux

	4.5 MAF C Function Listing
	MAF_AllowPasswordSet
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_Begin
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_EndLets NMAS know whether the method operation was a success (zero) or failure (non-zero). This information is used by NMAS to determine the next required login steps.
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_Free (obsolete 3/1/2006)
	Syntax
	Parameters
	See Also

	MAF_GetAttributeAllows an LCM/LSM to get the value of an attribute that is associated with this login session.
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_GetPasswordReturns the Universal Password password and password information of the user associated with the current login session (LSM only). This function is available only in NMAS 2.2 or later.
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_GetPasswordExReturns the Universal Password password and password information of the user associated with the current login session (LSM only). This function is available only in NMAS 2.3 or later.
	Syntax
	Parameters
	Return Code
	Remarks
	See Also

	MAF_LogEventAllows login methods to add audit log events to the NMAS audit log. This function is only available to proxy LCMs and LSMs. This functions is available only in NMAS 3.0 or later.
	Syntax
	Parameters
	Return Codes

	MAF_Malloc (obsolete 3/1/2006)
	Syntax
	Parameters
	See Also

	MAF_MemFree
	Syntax
	Parameters

	MAF_MemMalloc
	Syntax
	Parameters
	Return Values
	Remarks

	MAF_MemRealloc
	Syntax
	Parameters
	Return Values
	Remarks

	MAF_PolicyCheckPerforms a password policy check using the password policy that is effective for the user (LSM only). This function is available only in NMAS 2.2 or later.
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_PutAttributeAllows an LCM/LSM to put the value of an attribute that is associated with this login session.
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_Read
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_SetPasswordSets the password of the user associated with the current login session to the specified password (LSM only). This function is available only in NMAS 2.2 or later.
	Syntax
	Parameters
	Return Codes
	See Also

	MAF_Trace
	Syntax
	Parameters
	Return Codes
	See Also

	MAF_TraceEnabledAllows LSM and Proxy LCM to determine if NMAS trace is enabled. This function is available only in NMAS 2.2 or later.
	Syntax
	Parameters
	Return Codes
	See Also

	MAF_TraceOnErrorAllows trace messages to be displayed in Directory Services Trace (DSTrace) in LSMS and Proxy LCMs. The message is displayed only if the input error is non-zero. This function is available only in NMAS 2.2 or later
	Syntax
	Parameters
	Return Codes
	See Also

	MAF_Write
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_WriteRead
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_XRead
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_XWrite
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAF_XWriteRead
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAFDS_ATTRIBUTEContains information about a data store attribute.
	Syntax
	Fields

	MAFDS_CreateContextCreates a new MAFDS context handle that can be used with other MAFDS routines.
	Syntax
	Parameters
	Return Values
	Remarks
	See Also

	MAFDS_FreeContainerEntries
	Syntax
	Parameters
	See Also

	MAFDS_FreeContextFrees a MAFDS context.
	Syntax
	Parameters
	See Also

	MAFDS_FreeModValues
	Syntax
	Parameters
	See Also

	MAFDS_FreeValues
	Syntax
	Parameters
	See Also

	MAFDS_FreeValueData
	Syntax
	Parameters
	Remarks
	See Also

	MAFDS_GetParentContainerReturns the parent container DN of the specified object.
	Syntax
	Parameters
	Return Codes
	See Also

	MAFDS_GetPartitionRootContainerReturns the partition root container DN of the specified object.
	Syntax
	Parameters
	Return Codes
	See Also

	MAFDS_GetValueData
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAFDS_InsertModValue
	Syntax
	Parameters
	Remarks
	See Also

	MAFDS_ListContainerEntriesLists all of the objects in a container. The list may be filtered by object class.
	Syntax
	Parameters
	Return Codes
	Remarks

	MAFDS_ModifyEntry
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	MAFDS_ReadAttributeValues
	Syntax
	Parameters
	Return Codes
	See Also

	MAFDS_ReadInheritedAttributeValues
	Syntax
	Parameters
	Return Codes
	See Also

	MAFDS_VALUE_DATAContains an individual attribute value.
	Structure
	Fields

	5 Method Management Functions
	5.1 Configuration Store Functions
	5.2 SecretStore Management Functions
	5.3 Login Method Management Functions
	NMAS_DeleteLoginConfig Deletes the data associated with the specified tag and method on the named object. This function is available to the Novell Client and server. These interfaces are only available to Windows applications.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_DeleteLoginSecretDeletes the login secret data associated with the specified tag and method on the named object. This function is available to the Novell Client and server. These interfaces are only available on Windows platforms.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_GetLoginConfigReturns the data specified by the method tag from the Login Configuration store for the specified object. The data is decrypted before it is returned. The maximum size of the login configuration and login secret data is 60,000 bytes.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_LoginPerforms an NMAS login sequence.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_PutLoginConfigStores the tag and the data in the Login Configuration store for the specified method and specified object. The data is encrypted using the data strength encryption key associated with the Login Configuration store. The maximum size o
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_PutLoginSecretStores the tag and the data in the Login Secret store for the specified method and object. The data is encrypted using the authentication strength encryption key associated with the Login Secret store. This function is available to th
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	nmasldap_delete_login_configDeletes the data associated with the specified tag and method on the named object. This function is typically used by management applications and is provided in the NMAS “ldapext” shared library.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_delete_login_secretDeletes the login secret data associated with the specified tag and method on the named object and is typically used by management.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_login_configReturns the data specified by the method tag from the Login Configuration store for the specified object. The data is decrypted before it is returned. The maximum size of the login configuration and login secret data is 60,000 b
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_put_login_configStores the tag and the data in the Login Configuration store for the specified method and specified object. The data is encrypted using the data strength encryption key associated with the Login Configuration store. The maximum
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_put_login_secretStores the tag and the data in the Login Secret store for the specified method and object. The data is encrypted using the authentication strength encryption key associated with the Login Secret store. This function is typically
	Syntax
	Parameters
	Return Codes
	See Also

	6 NMAS Login Policy Management
	6.1 NMAS Login Policy Management
	nmasldap_policy_refreshRequests that NMAS re-reads the login policy, and re-loads all login methods.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_check_login_policyQueries NMAS to determine if the user’s login policy will allow the user to log in. Also, depending upon the specified flags, this request will update the user login attributes, such as login intruder attributes, login failu
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_set_address_policyAdds a login network address restriction to the target object. Network restrictions indicate which network address a user can log in from.
	Syntax
	Parameters
	Return Codes
	See Also

	7 Password Management Functions
	7.1 NMAS Password Management Java Classes
	7.2 Password Management Requirements
	7.2.1 Other Development Requirements

	7.3 Simple Password Management
	7.4 Universal Password Management
	7.5 NMAS LDAP C Password Management Functions
	nmasldap_put_simple_pwdSets the simple password for the object provided by the passed-in Distinguished Name.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_delete_simple_pwdDeletes a simple password from the object provided by the passed-in Distinguished Name.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_simple_pwdGets the simple password for the object provided by the passed-in Distinguished Name.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_change_passwordChanges the password of the specified object.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_set_passwordWrites the user’s new password.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_delete_passwordDeletes the password of the object specified.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_passwordReads the password.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_password_policy_dnFollows an established password algorithm up the tree to find the password policy that relates to the specified object, then returns that password policy’s distinguished name.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_policy_check_current_passwordChecks a user’s current password to determine if it matches the password policy that is effective for the user.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_policy_check_passwordChecks the specified password to determine if it matches the password policy that is effective for the specified user.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_password_statusReturns the status of the target object’s Universal Password and Simple Password.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_password_status_exReturns the status of the target object’s Universal Password and Simple Password.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_user_random_passwordGenerates and returns a random password that fulfills the requirements specified by the password policy that is effective for the target user.
	Syntax
	Parameters
	Return Codes
	See Also

	nmasldap_get_random_passwordGenerates and returns a random password that fulfills the requirements specified by the input password policy.
	Syntax
	Parameters
	Return Codes
	See Also

	8 Identification Method Function
	8.1 Identification Method Function Descriptions
	8.1.1 Implementing an ID Plug-in
	8.1.2 Valid Login Method Flags

	8.2 Login Control Registry Settings
	8.3 NMAS Log-in Method Function Descriptions
	NMAS_LOGIN_IDENTITYEnables the client to pass in all user identification factors. The client DLL can then change what is passed into the buffer.
	Syntax
	Parameters

	LPFN_DeviceRemoved
	Syntax
	Parameters
	Remarks

	*LPFN_NMAS_RegisterIdentityPlugin
	Syntax
	Parameters
	Remarks

	*LPFN_NMAS_SetLoginIdentityCurrently implemented in the NMAS client login dialog box. An identity plug-in DLL should call this function when it has retrieved the user ID.
	Syntax
	Parameters
	Remarks

	*LPFN_NMAS_StartIdentityPlugin
	Syntax
	Remarks

	*LPFN_NMAS_StopIdentityPlugin
	Syntax
	Remarks

	RegisterDeviceMonitorPlugin
	Syntax
	Parameters

	StartDeviceMonitorPluginThe Secure Workstation service calls this function to tell your DLL to start monitoring its device.
	Syntax
	Parameters
	Remarks

	StopDeviceMonitorPluginThe Secure Workstation service calls this function to tell your DLL to stop monitoring its login device. This function can be called when the workstation is locked, or when a user logs out of the workstation.
	Syntax
	Parameters
	Remarks

	NMAS_GetUserName (obsolete 3/03)
	Syntax
	Parameters
	Return Codes

	9 NMAS Javadoc References
	9.1 NMAS Interface Classes
	9.2 NMAS Summary Classes
	9.3 NMAS Exception Classes
	9.4 NMAS Constants

	A NMAS Error Codes
	B Installing Novell eDirectory
	C Deprecated NMAS Functions
	C.1 Client Application Login Functions
	NMAS_DisconnectedLogin Starts the NMAS disconnected login process using the input login and user information.
	Syntax
	Parameters
	Remarks
	Return Codes

	NMAS_LegacyReloginStarts the NMAS login process using the input login and user information or the login and user information used from previous logins.
	Syntax
	Parameters
	Remarks
	Return Codes

	C.2 NMAS Transport API
	NMAS_ClientLoginCalled by the client transport to initiate the NMAS login.
	Syntax
	Parameters
	Return Codes
	See Also
	NMAS_ClientLoginRequestInfo
	NMAS_ClientLoginTransportFcn

	NMAS_MessageHandler This function is called by the server side of the transport to process the NMAS client request and to return the NMAS server reply.
	Syntax
	Parameters
	Return Values
	See Also

	NMAS_FreeReply
	Syntax
	Parameters
	Return Codes
	See Also

	C.3 Proxy Functions
	NMAS_Authenticate
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_AuthenticateConnection
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_CanDo
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_CreateContextCreates an NMAS context handle.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_DestroyContextDestroys an NMAS context handle.
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_FindMethods
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_FindLoginSequences
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	NMAS_GetAttribute
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_GetAvailableMethods
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_InvokeMethod
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	NMAS_LocalAuthenticate
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_Logout
	Syntax
	Parameters
	Return Codes
	See Also

	NMAS_PutAttribute
	Syntax
	Parameters
	Remarks
	Return Codes
	See Also

	NMAS_WhatNext
	Syntax
	Parameters
	Return Codes
	Remarks
	See Also

	C.4 Secure Workstation Login Method
	C.4.1 Device Monitor Plug-in
	C.4.2 Secure Workstation Policies

	D Revision History
	Glossary

